On the principle of stability of invariance of physical systems
Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Volume 25 (1976) no. 2, pp. 177-182.
@article{AIHPA_1976__25_2_177_0,
     author = {Tahir Shah, K.},
     title = {On the principle of stability of invariance of physical systems},
     journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
     pages = {177--182},
     publisher = {Gauthier-Villars},
     volume = {25},
     number = {2},
     year = {1976},
     mrnumber = {424095},
     zbl = {0388.58022},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1976__25_2_177_0/}
}
TY  - JOUR
AU  - Tahir Shah, K.
TI  - On the principle of stability of invariance of physical systems
JO  - Annales de l'institut Henri Poincaré. Section A, Physique Théorique
PY  - 1976
SP  - 177
EP  - 182
VL  - 25
IS  - 2
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1976__25_2_177_0/
LA  - en
ID  - AIHPA_1976__25_2_177_0
ER  - 
%0 Journal Article
%A Tahir Shah, K.
%T On the principle of stability of invariance of physical systems
%J Annales de l'institut Henri Poincaré. Section A, Physique Théorique
%D 1976
%P 177-182
%V 25
%N 2
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1976__25_2_177_0/
%G en
%F AIHPA_1976__25_2_177_0
Tahir Shah, K. On the principle of stability of invariance of physical systems. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Volume 25 (1976) no. 2, pp. 177-182. http://archive.numdam.org/item/AIHPA_1976__25_2_177_0/

[1] H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Paris, 1899.

[2] R. Abraham and J. Marsden, Foundation of Mechanics, Benjamin, New York, 1967.

[3] We do not list papers because of extreamly large numbers of papers in this field.

[4] R. Thom, Stabilité Structurelle et Morphogenèse, Benjamin, 1972 and reference there in. | MR | Zbl

[5] H.D. Doebner, Nouvo Cim., A49, 1967, p. 306; Jour. of Math. Phys., t. 9, 1968, p. 1638 and t. 11, 1970, p. 1463. | Zbl

[6] K.T. Shah, Topics in bifurcation theory, Seminar report, Clausthal, 1973.

[7] K.T. Shah, Reports on Math. Phys., t. 6, 1974, p. 171. | MR | Zbl

[8] R. Thom, Symmetries gained and lost, Proceedings of III GIFT Seminars in Theor. Phys., Madrid, 1972 ; see also L. Michel, Geometrical aspects of symmetry breaking, same proceedings.

[9] R. Richardson, Jour. of Diff. Geom., t. 3, 1969, p. 289. | Zbl

[10] R. Richardson, Proceedings of Symp. on Transformation Groups, Edited by P. Mostert, p. 429, Springer-Verlag, 1967. | MR

[11] M. Peixoto, (Topology, t. 1, 1962, p. 101, Ann. of Math., t. 87, 1968, p. 422) has shown that if the dimension of the manifold is two, then the set of structurally stable vector field or dynamical system is a dense set on the set of all vector fields on this two dimensional manifold. In the case of differentiable maps i. e. C∞-maps, one can define stability as follows. Let Mn and Np be the two C∞-manifolds and let Cr (,) be the space of all maps from Mn to Np provided with the Cr-topology. A map is called stable if all'nearby maps' k are of the same type topologically as f and the diagram is commutative, i. e. fh = h'k where h and h' are ∈-homeomorphisms of Mn and Np. For a general reference, see M. Golubitsky and Guillemin, Stable mappings and their Singularities, Springer-Verlag, 1973. | MR

[12] E.P. Wigner and E. Inönü, Proc. Natl. Acad. Sci (USA), t. 39, 1953, p. 510. | MR | Zbl