@article{AIHPA_1977__26_4_405_0, author = {O'Brien, D. M. and Cant, A. and Carey, A. L.}, title = {On characteristic identities for {Lie} algebras}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {405--429}, publisher = {Gauthier-Villars}, volume = {26}, number = {4}, year = {1977}, mrnumber = {480656}, zbl = {0359.17003}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1977__26_4_405_0/} }
TY - JOUR AU - O'Brien, D. M. AU - Cant, A. AU - Carey, A. L. TI - On characteristic identities for Lie algebras JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1977 SP - 405 EP - 429 VL - 26 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1977__26_4_405_0/ LA - en ID - AIHPA_1977__26_4_405_0 ER -
%0 Journal Article %A O'Brien, D. M. %A Cant, A. %A Carey, A. L. %T On characteristic identities for Lie algebras %J Annales de l'institut Henri Poincaré. Section A, Physique Théorique %D 1977 %P 405-429 %V 26 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPA_1977__26_4_405_0/ %G en %F AIHPA_1977__26_4_405_0
O'Brien, D. M.; Cant, A.; Carey, A. L. On characteristic identities for Lie algebras. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 26 (1977) no. 4, pp. 405-429. http://archive.numdam.org/item/AIHPA_1977__26_4_405_0/
[1] Proc. Roy. Soc., t. A 155, 1936, p. 447-459. | JFM | Zbl
,[2] Bull. Res. Counc. Israël, t. 5 A, 1956, p. 197.
,[3] J. Math. Phys., t. 12, 1971, p. 2099-2106. | MR
and ,[4] J. Math. Phys., t. 12, 1971, p. 2106-2113. | MR | Zbl
,[5] J. Aust. Math. Soc. B, 1976.
, to appear in[6] J. Funct. Anal., t. 20, 1975, p. 257-285. | Zbl
,[7] Introduction to Lie Algebras and Representation Theory. Springer-Verlag, New York, Heidelberg, Berlin, 1972. | MR | Zbl
,[8] See lemma 2.2 in Trans. Amer. Math. Soc., t. 176, 1973, p. 1-49. | MR | Zbl
,[9] Multilinear Algebra. Springer-Verlag, New York, Heidelberg, Berlin, 1967. | MR | Zbl
,[10] Lectures in Abstract Algebra, III. Van Nostrand, Reinhold, New York, 1964. | MR | Zbl
,[11] Harmonic Analysis on Semisimple Lie Groups I. Springer-Verlag, New York, Heidelberg, Berlin, 1972. | Zbl
,[12] J. Phys. A, Ser. 2, t. 2, 1969, p. 274-277.
,[13] J. Math. Phys.
, and , to appear in