The generalized three circle - and other convexity theorems with application to the construction of envelopes of holomorphy
Annales de l'I.H.P. Physique théorique, Tome 27 (1977) no. 1, pp. 31-60.
@article{AIHPA_1977__27_1_31_0,
     author = {Borchers, H. J.},
     title = {The generalized three circle - and other convexity theorems with application to the construction of envelopes of holomorphy},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {31--60},
     publisher = {Gauthier-Villars},
     volume = {27},
     number = {1},
     year = {1977},
     zbl = {0376.32009},
     mrnumber = {457777},
     language = {en},
     url = {archive.numdam.org/item/AIHPA_1977__27_1_31_0/}
}
Borchers, H. J. The generalized three circle - and other convexity theorems with application to the construction of envelopes of holomorphy. Annales de l'I.H.P. Physique théorique, Tome 27 (1977) no. 1, pp. 31-60. http://archive.numdam.org/item/AIHPA_1977__27_1_31_0/

[1] H.J. Borchers and J. Yngvason, Necessary and sufficient conditions for integral representations of Wightman functionals at Schwinger points. Commun. Math. Phys., t. 47, 1976, p. 197. | MR 479134 | Zbl 0319.46060

[2] H. Bremermann, Ueber die Aequivalenz der pseudokonvexen Gebiete und der Holomorphiegebiete im Raum n komplexer Veränderlicher. Math. Ann., t. 128, 1954, p. 63. | MR 71088 | Zbl 0056.07801

[3] H. Bremermann, Complex convexity. Trans. Amer. Math. Soc., t. 82, 1956, p. 17. | MR 79100 | Zbl 0070.30402

[4] H. Bremermann, On the conjecture of the equivalence of pluri-subharmonic functions and the Hartogs functions. Math. Ann., t. 131, 1956, p. 76. | MR 77644 | Zbl 0070.07603

[5] H. Grauert und F. Fritsche, Einführung in die Funktionentheorie mehrerer Veränderlicher. Hochschultext Springer, Berlin, Heidelberg, New York, 1974. | MR 372232 | Zbl 0285.32001

[6] L. Hörmander, An introduction to complex analysis in several variables. D. van Nostrand, Princeton, N. J., 1966. | MR 203075 | Zbl 0138.06203

[7] H. Meschkowski, Hilbertsche Räume mit Kernfunktionen. Springer, Berlin, Göttingen, Heidelberg, 1962. | MR 140912 | Zbl 0103.08802

[8] A. Pietsch, Nukleare lokalkonvexe Räume. Akademie-Verlag, Berlin, 1969. | MR 181888 | Zbl 0184.14602