Coherent states and square integrable representations
Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 29 (1978) no. 2, pp. 139-156.
@article{AIHPA_1978__29_2_139_0,
     author = {Moscovici, Henri and Verona, Andrei},
     title = {Coherent states and square integrable representations},
     journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
     pages = {139--156},
     publisher = {Gauthier-Villars},
     volume = {29},
     number = {2},
     year = {1978},
     mrnumber = {513686},
     zbl = {0392.22008},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1978__29_2_139_0/}
}
TY  - JOUR
AU  - Moscovici, Henri
AU  - Verona, Andrei
TI  - Coherent states and square integrable representations
JO  - Annales de l'institut Henri Poincaré. Section A, Physique Théorique
PY  - 1978
SP  - 139
EP  - 156
VL  - 29
IS  - 2
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1978__29_2_139_0/
LA  - en
ID  - AIHPA_1978__29_2_139_0
ER  - 
%0 Journal Article
%A Moscovici, Henri
%A Verona, Andrei
%T Coherent states and square integrable representations
%J Annales de l'institut Henri Poincaré. Section A, Physique Théorique
%D 1978
%P 139-156
%V 29
%N 2
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1978__29_2_139_0/
%G en
%F AIHPA_1978__29_2_139_0
Moscovici, Henri; Verona, Andrei. Coherent states and square integrable representations. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 29 (1978) no. 2, pp. 139-156. http://archive.numdam.org/item/AIHPA_1978__29_2_139_0/

[1] N.H. Anh, Lie groups with square integrable representations. Ann. of Math., t. 104, 1976, p. 431-458. | MR | Zbl

[2] L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups. Inventiones Math., t. 14, 1971, p. 255-354. | MR | Zbl

[3] P. Bernat et al., Représentations des groupes de Lie résolubles. Dunod, Paris, 1972. | MR | Zbl

[4] J.-Y. Charbonnel, La formule de Plancherel pour un groupe de Lie résoluble connexe. Thèse 3e cycle, Université Paris VII.

[5] Harish-Chandra, Discrete series for semisimple Lie groups, II. Acta Math., t. 116, 1966, p. 1-111. | MR | Zbl

[6] B. Kostant, Quantization and unitary representations, I. Lecture Notes in Math., vol. 170, p. 87-208. | MR | Zbl

[7] G.W. Mackey, Induced representations of locally compact groups, I. Ann. of Math., t. 55, 1952, p. 101-130. | MR | Zbl

[8] C.C. Moore, Ergodicity of flows on homogeneous spaces. Amer. J. Math., t. 88, 1966, p. 154-178. | MR | Zbl

[9] H. Moscovici, Coherent state representations of nilpotent Lie groups. Commun. math. Phys., t. 54, 1977, p. 63-68. | MR | Zbl

[10] H. Moscovici et A. Verona, Sur les représentations induites holomorphes d'un groupe de Lie résoluble. C. R. Acad. Sci., Paris, t. 284, 1977, p. 1183-1185. | MR | Zbl

[11] G.D. Mostow, Homogeneous spaces with finite invariant measures. Ann. of Math., t. 75, 1962, p. 17-37. | Zbl

[12] L. Pukanszky, Characters of connected Lie groups. Acta Math., t. 133, 1974, p. 81-137. | MR | Zbl

[13] W. Schmid, L2-cohomology and the discrete series. Ann. of Math., t. 103, 1976, p. 375-394. | MR | Zbl

[14] D.J. Simms and N.M.J. Woodhouse, Lectures on geometric quantization, Lecture Notes in Physics, vol. 53. | Zbl

[15] J.A. Wolf, Unitary representations on partially holomorphic cohomology spaces. Memoirs of Amer. Math. Soc., no. 138. | Zbl