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A dynamical approach
to relativistic continuum thermodynamics
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Insr. Henri Poincaré,

Vol. XXIX, nO 4, 1978,

Section A :

Physique théorique.

ABSTRACT. The role of the mass-energy equivalence principle in the
construction of a relativistically invariant theory of continuum thermodyna-
mics is examined. It is seen that, as a consequence of this principle, the study
of the irreversible phenomena taking place within a given body ~ may be
reduced to the study of the mutual interactions between two ideal sub-
systems of ~, called respectively the heat subsystem, and the material sub-
stratum. The analysis of this aspect, as well as of the limitations posed by
the 2nd law of thermodynamics, constitutes the essence of the « dynamical
approach )) proposed here. Among the consequences of the general theory,
a particularly significant one is that the resulting description of the pheno-
mena of heat conduction and of internal dissipation is automatically consis-
tent with the existence of a finite wave speed both for the temperature and
for the acceleration fields.

RÉSUMÉ. - Nous examinons Ie role du principe d’equivalence masse-
energie dans la creation d’une theorie relativiste de la thermodynamique
du continu. Comme consequence de ce principe, 1’etude des phenomenes
irreversibles ayant lieu dans un corps R peut être reduit a 1’etude des inter-
actions mutuelles de deux sous-systemes ideaux de R, appeles respective-
ment sous-systeme thermique et support materiel. L’ « approche dyna-
mique » que nous proposons se base sur 1’analyse de ce point, et des
limitations imposees par Ie second principe de la thermodynamique. Une
des consequences specialement remarquables de la theorie generale est que
la description correspondante des phenomenes de la conduction de la chaleur
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424 E. MASSA AND A. MORRO

et de la dissipation interne est automatiquement consistante avec I’existence
d’une vitesse finie pour les ondes des champs soit de la temperature, soit de
1’acceleration.

1. INTRODUCTION

The first significant contribution to a relativistically invariant formulation
of continuum thermodynamics was given in 1940 by C. Eckart, who, in
his pioneering paper [7], took over into the framework of relativity the ther-
modynamics of irreversible processes. The subsequent development of the
theory reflects the simultaneous evolution of non-relativistic continuum

thermodynamics. In this connection we recall, for instance, the paper by
Grot and Eringen [2], which examines, in the relativistic context, the

viewpoint of Coleman and Noll C3] about the interpretation of the 2nd law
of thermodynamics. Analogously, the work by Curtis and Lianis [4] extends
the classical thermodynamic analysis of Coleman [J] to a wide class of
materials with memory. A different form of the entropy principle, which
is the relativistic counterpart of the entropy principle proposed by Muller
in [6], was considered in the papers by Muller [7], and Alts and Muller [8].
Among the basic properties of any acceptable relativistic theory, a funda-

mental one is the requirement that the perturbations of any physical field
should propagate with a finite speed, not exceeding the speed of light.
A drawback of Eckart’s theory (and of many other theories as well) is that
it violates the stated condition. The reason for this drawback is entirely
classical, and is related to the well known result that Fourier’s theory of
heat conduction, and Navier-Stokes’ theory of viscosity rule out the possi-
bility of thermal and acceleration waves. In the case of thermal disturbances,
a way out of the difficulty was shown in 1948 by Cattaneo [9], who proposed
to replace Fourier’s law by the more general constitutive equation

where q is the heat flux, g is the temperature gradient, 03BA is the thermal

conductivity, and 03C4 is a characteristic time (1). After the work by Cattaneo,
many papers appeared on the theory of heat conduction with finite wave
speed; among these, the works by Muller [11] and Lebon and Lamber-
mont [72] can be viewed within the framework of an extended thermo-

(I) Sometimes, the equation proposed by Cattaneo is referred to as the Maxwell-Cat-
taneo equation, since it was obtained previously by Maxwell [70] in 1867. However,
Maxwell was not interested in wave propagation, and thus neglected the term 03C4q, as

« the rate of conduction will rapidly establish itself ».
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425RELATIVISTIC CONTINUUM THERMODYNAMICS

dynamics of irreversible processes ; the papers by Green and Laws [13] and
Muller [14] account for the existence of temperature waves, starting from
a quite general expression for the second law of thermodynamics. It seems,
however, that most of the literature on the subject follows the viewpoint of
Coleman and Noll [3, 5]. For instance, concerning materials with instan-
taneous response, we mention the papers by Bogy and Naghdi [15] (tempe-
rature-rate dependence), and by Kosinski [16] (internal variables). Rigid
heat conductors with fading memory are considered by Gurtin and Pip-
kin [17], McCarthy [18] and Morro [19], while a general linear theory of
heat conduction is given by Meixner in ~20], starting with a basic inequality
that does not make use of non-equilibrium entropy.
Within the relativistic context, beyond the already cited papers [7, 8], it

is worth recalling the works by Bressan [21], Kranys [22], Boillat [23],
Maugin [24] and Lianis [25], all dealing by different procedures with
theories of heat conduction consistent with temperature propagation with
finite speed.
On the contrary, both in the classical and in the relativistic context,

much less attention has been paid to the analogous problem of seeking a
constitutive equation for the viscous stress tensor, eliminating the paradox
of the impossibility of wave propagation for the acceleration field. In this
connection, we mention first the relation written by Maxwell [10]

where, in Maxwell’s notation, F is the stress tensor, S is the time derivative
of strain, T and E are suitable constants. As it is well known, this equation
is compatible with the existence of acceleration waves. In the case of mate-
rials with memory, a far reaching analysis of wave propagation within the
class of Maxwellian materials is given by Coleman, Greenberg and Gur-
tin [2d]. Finally, within the relativistic context, we recall the work by
Kranys [27], based on an ad hoc phenomenological postulate, according to
which the constitutive equations for non-stationary processes are obtained
from the corresponding equations valid in the quasi-stationary case through
the action of a suitable differential operator, called the relaxation operator.
Although largely incomplete, the previous list of references points out

the wide variety of themes involved in the construction of a relativistically
invariant theory of continuum thermodynamics. Strangely enough, however,
until now no systematic attempt has been made in order to embody in the
mathematical foundations of the theory another basic law of relativistic
physics, namely the mass-energy equivalence principle. This law, which is
at least as fundamental as the existence of an upper bound to the speed of
propagation of physical disturbances, is reflected in the fact that ((in relati-
vistic mechanics an energy flux necessarily involves a mass flux)) ([28], ~ 127),
and is therefore very likely to have a direct relevance in the study of the

Vol. XXIX, nO 4 - 1978.



426 E. MASSA AND A. MORRO

phenomenon of heat conduction. In a non-relativistic context, an idea in
this sense is already present in the work by Kaliski [29], where the suggestion
is made that, in the case of a heat flow of marked non-stationary character,
account must be taken of the inertia of time variability of the heat flow,
or « thermal inertia ».

In this paper, we propose to push forward this viewpoint, by discussing
a dynamical approach to relativistic continuum thermodynamics, in which
the mass-energy equivalence principle is set at the basis of all subsequent
developments. As a preliminary step in this analysis, in § 2 we present a
brief review of the main concepts and definitions involved in the construction
of a mathematical model for a material continuum ~. The argument is

completed by a relativistic formulation of the 2nd law of thermodynamics
(interpreted in the sense of Coleman and Noll, i. e. as an a priori restriction
on the constitutive characterization of the mcdel), and by a subsequent
description of the so called purely mechauical scheme, in which all irrever-
sible phenomena taking place within the body ~ are explicitly neglected.
The role of the mass-energy equivalence principle in the construction of

a relativistically invariant theory of irreversible thermodynamics is discussed
extensively in § 3. As we shall see, the main role of this principle is that it
leads quite naturally to associate with the heat flux q a set of mechanical
attributes (kinetic energy density, momentum density, momentum-flux
density), summarized into a symmetric tensor field Q. The simplest conjecture
is then to regard Q as the energy-momentum tensor of an ideal physical
system ~, called the heat subsystem of the continuum ~. This viewpoint is
completed by representing ~ as a binary system, formed by two interacting
subsystems : the heat subsystem ~, and a further subsystem ~ called the
material substratum of ~. In this way, the central problem of irreversible
thermodynamics may be viewed as the study of the mutual interactions
between the subsystems ~ and ~, and may therefore be handled with the
standard techniques of relativistic continuum mechanics. In particular, as
a result of the interactions, the subsystem ~ will generally be set in motion
with respect to ~, thus giving rise to the phenomenon of heat conduction.
In addition to this, we may have various effects of heat production, either
by direct energy exchanges between!7 and ~, or by other causes (external
effects, internal dissipation). After these preliminaries, the rest of § 3 is
devoted to a detailed analysis of the nature of the various interactions, as
well as of the a priori constraints posed by the 2na law of thermodynamics.
The results so obtained are applied in § 4 to the study of two typical irre-
versible effects, namely the phenomenon of heat conduction in non-dissi-
pative media, and the phenomenon of internal dissipation in non-conducting
materials. Both arguments are merely sketched for illustrative purposes,
leaving aside all unnecessary details, and looking only to the essential aspects
of the theory. The important conclusion to be drawn from this analysis is

Annales de Henri Poincaré - Section A



427RELATIVISTIC CONTINUUM THERMODYNAMICS

that the dynamical scheme developed in § 3 is automatically consistent with
the requirement of wave propagation both for the temperature and for the
acceleration field, as shown by the fact that it yields back Maxwell-Cat-
taneo’s equation for heat conduction, and Maxwell’s equation for viscosity
as non relativistic limits of the general theory.

2. MATHEMATICAL FOUNDATIONS

2.1. Preliminaries

Let 1"’" 4 be a space-time manifold, with fundamental form (2)

In j/" 4, let 0396 denote the congruence of stream lines of a material conti-

nuum also, let V denote the corresponding four-velocity field, with

normalization = - 1. As discussed extensively in Refs. [30-32], under
suitable smoothness conditions, the congruence E determines a corres-
ponding physical frame of reference in 1/’ 4 (in this connection,
see also [33-36]). The latter will be indicated by [3], and will be called the
co-moving frame of reference associated with 88, or, more synthetically,
the material rest-frame. Strictly associated with [3] is a pair of projection
operators ~ (temporal projection) and ~V’ (spatial projection), defined on
vector fields by

and extended in the obvious way to tensor fields of arbitrary rank. Through a
systematic use of the operators (2.1) it is possible to replace the generally
covariant formulation of physical laws by an equivalent formulation, having
a strictly relative character, i. e. involving only space vectors and space tensors
relative to [3]. All this is well known (see, e. g., the already cited refe-
rences [30-32]), and will not be repeated here.
With these preliminaries, let us now analyse the construction of a dyna-

mical for the given continuum ~. In this connection, a very general
line of approach may be traced as follows :

1 ) Introduction of the space of thermokinetic processes of the system ~.
The latter is defined as the abstract space X formed by the totality of pairs
(E, 0(’)), where E is a time-like congruence over 1/ 4’ identified with the

(2) Greek indices run from 0 to 3. Einstein’s summation convention is used through-
out. The signature of the metric is - + + +. Partial derivatives are indicated by a
comma; covariant derivatives by a semicolon. The symbol =, in place of =, indicates
that the corresponding relation is meant as a definition.

Vol. XXIX, no 4 - 1978.



428 E. MASSA AND A. MORRO

congruence of stream lines of ~, and 6(’) is a strictly positive scalar field,
identified with the temperature field inside the body ~.

2) Introduction of an abstract space 9t* (henceforth called the represen-
tative space of R), defined by the condition that all physical attributes of R
may be expressed as maps of 9t* into the algebra of tensor fields over j/" 4’
In general, each element @ E 9P will consist of a collection

(E,0(’)~(’),...,v(’)), where E,0(’) are the thermo kinetic variables
already introduced in 1), while ~(’), ..., v(’) are ~ 0) auxiliary fields,
all having a direct relevance to the problem in study.

3) Representation of the internal response of the continuum ~, by means
of a set of constraints, expressed by functional equations of the form

where are suitable maps of the space 9t* into the algebra of tensor
fields over ~4. In connection with equations (2.2), the basic requirement
is that they express the evolution of the fields 2( ’), ..., v(’) in terms of the
thermo kinetic variables E, 0(’). Quite generally, this has the effect of res-
tricting the choice of the elements ? E 9t* to a distinguished subspace
~ = 9t*, called the space of admissible processes of ~. Depending on the
nature of the constraints (2.2), the models may be further classified into
finite (or holonomic) ones, in which eqs. (2 . 2) determine the fields

2( .), ..., v(’) uniquely in terms of E, 0(’), thus setting up a 1 - 1 corres-

pondence between the space X of thermo kinetic processes and the subspace
9t c: 9P of admissible processes, and differential (or non-holonomic) ones,
in which, for each choice of E, 0(’), the determination of the
fields 2(’), ..., v(’) relies on the solution of a Cauchy problem, and thus
involves the introduction of a suitable set of initial data. Exactly as it

happens in classical Lagrangian dynamics, in the holonomic case one can
get rid of all unnecessary redundancies, by starting at the outset with the
identification 9t* = X. In general, such a simplification does not occur in
the non-holonomic case, unless one regards the initial data as fixed once
for all (e. g. in the asymptotic limit t 2014~ 2014 oo), in which case all differences
between the finite models and the differential ones disappear.

4) Characterization of the dynamical response of the continuum ~ under
the effect of the interactions with the external world. In a relativistic context,
this is achieved by assigning to R a corresponding energy-momentum tensor,
defined as a map T of the space 9[* into the module of symmetric tensor
fields over 1/ 4’ The effect of T on an arbitrary element @ E 9t* will be indi-
cated by T i. e.

With this in mind, the whole content of relativistic continuum mechanics
relies on the following j

Annales de l’Institut Henri Poincaré - Section A



429RELATIVISTIC CONTINUUM THERMODYNAMICS

AXIOM 2.1. 2014 In every physical process, the field T = lr(0152) is related to
the total four-force density b acting on R as a consequence of the interactions
with the external world by the balance equations

Conversely, for each choice of the external four-force b, eqs. (2 . 3), together
with the constraints (2.2), are sufficient to determine the evolution of R
(i. e. a unique admissible process @ E W) from given initial data (3).
When the system ~ is isolated, the balance equations (2 . 3) take the simpler

form

The study of the solutions of eqs. (2.4)2014or, more generally, of eqs. (2.3)2014
within the class of admissible processes, constitutes the essence of the so
called problem of motion for the continuum ~‘. In this connection, see,
e. g., [34, 37].
For later use, it is also worth noticing that, in view of eq. (2.3), the tem-

poral projection coincides with the external power density acting
on R in its own rest-frame. In this sense, the has always a
non-mechanical nature, and accounts for all effects of heat transfer to the
system R from the external sources, or of heat produetion within R, due to
external causes. The corresponding equation

(energy balance equation) is often referred to as the 1 St law of 
mics. Similarly, the spatial projection of eqs. (2.3) in the material rest-
frame [3] gives rise to the momentum balance equation

2.2. Entropy principle and related topicsi r i Z Z

i) As it is clear from the previous discussion, once the nature of the space
9t* has been fixed, the construction of a mathematical model for the conti-
nuum R relies on the introduction of a suitable set of constitutive equations,
defined as maps of ~* into the algebra of tensor fields over ~4. These are
explicitly involved in two basic operations :

a) representation of the internal response of f!J, through the introduction of

(3) Strictly speaking, this assertion, as well as the whole characterization of the sys-
discussed above, is valid only when the geometry of "f/ 4 is regarded as given, i. e.

whenever the contribution to the total gravitational fields is regarded as negligible
(as it happens e. g. in Special Relativity). In the opposite case, one would have to resort to
more general techniques that are outside the scope of this work. For a geometrical approach
to the problem of motion in General Relativity, see e. g. [38, 39].

Vol. XXIX, nO 4 - 1978.



430 E. MASSA AND A. MORRO

the constraints (2.2), and the subsequent definition of the class u ~ u*
of admissible processes of f!J ;

b) representation of the attributes of R which are relevant to the problem
in study (We recall that, in a dynamical context, these must necessarily
include the energy-momentum tensor T = lr(0152)).
Both operations a) and b) together will be said to provide a constitutive

characterization of the continuum ~‘ over the representative space 9t*. In
this connection, an a priori condition, valid for all types of materials, comes
from a fundamental law of Physics, known as the 2nd law of Thermodynamics.
Following the modern trend, initiated by Coleman and Noll [3, 5], we shall
regard the latter as a restriction on the choice of the constitutive equations,
expressed in the form of an inequality that must hold identically, over the
whole subspace U ~ U*. In this sense, the 2nd law plays the role of a selection
rule, that allows to discriminate between models that may be physically
significant, and models that are surely unrealistic. In a relativistic context,
a quite general formulation is obtained by including among the relevant
attributes of f!J two further quantities, namely :

1) the entropy-flux four vector, defined as a map s = 5(@) of the space U*
into the module of vector fields over ’Yi’4 ;

2) the dynamical temperature 8, defined as a map of 9t* into the class of
strictly positive functions over 1/4’
The basic constraint is then expressed by the following

AXIOM 2. 2 (dissipation principle). For each @ E ~*, define the entropy
production associated with @ as the quantity

with s = s(0152), 8 = O(0152), T = lr(0152). Then, a necessary condition for a
N N

mathematical model of R to be physically admissible is that the inequality

be satisfied identically over the whole subspace U ~ U*. In particular, every
process @ for which the associated entropy production (2.6 a) is iden-
tically zero is called a reversible process of PÃ.
Axiom 2 . 2 provides a formulation of the 2nd law especially suited to the

type of interpretation discussed above (in this connection see also [2]). In
fact, according to our previous definitions, every process @ ~ 9t is determined
2014up to initial data by the knowledge of the thermo kinetic variables

E, 0(’). The content of Axiom 2 . 2 is therefore that, in any realistic model
of the inequality (2 . 6 b) should hold identically, for all choices of E, 0(’)
and of the initial data. In this sense, the requirement (2. 6 b) does indeed

Annales de l’Institut Henri Poincaré - Section A
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imply an effective restriction on the nature of the constitutive equations, in
complete agreement with the interpretation of the 2nd law in the sense of
Coleman and Noll. Notice also that, when the system ~ is isolated, the
inequality (2. 6 b) reduces to the simpler condition 0, valid for all
processes C ~ U consistent with the balance equations (2.4). In connection
with this aspect of the 2nd law, see e. g. [7].

ii) Besides the 2nd law of thermodynamics, another fundamental constraint
on the choice of a physically admissible model for the continuum R comes
from the law of baryon conservation When the class of phenomena in
study does not include quantum effects (particle-antiparticle creation or
annihilation, ~3 decay, etc.), the latter may be replaced by a stronger assump-
tion, concerning the existence of a material content of R, conserved in time-
Again, this property is expressed relativistically by assigning to PÃ a material
density m = m(0152), such that the associated four current mV satisfies the
balance equation

In view of eq. (2.7), the density m is essentially a geometrical quantity,
related, up to a time-independent factor, to the reciprocal of the volume
element in the material rest-frame [3]. In this sense, the constitutive equa-
tion for m is not really significant, and, as such, it will be no longer mentioned
in the following. As a further comment on eq. (2.7) we remark once again
that the definition of m is strictly connected with a macroscopic picture of
physical reality, in which the concept of « material content )) of R has a
primitive character. In the presence of quantum effects, one would have to
resort to a different type of density 11, called the baryon number density
(number of baryons per unit proper volume, with anti-baryon, if any,
counted negatively). With this definition, the balance equation = 0
has then general validity [40].

iii) In most cases of actual physical interest, the construction of a mathe-
matical model for the continuum ~ is subject to a further constraint, of
structural nature, expressed in the form of an algebraic relation among the
fields T, sand 8. To see this point, for each @ E ~[*, let us express the spatial
resolution of the entropy-flux four vector ~ = 5(@) in the material rest-
frame [3] in terms of a scalar field 11 = N(0152) and a spatial vector field
q = q(0152) according to the equation

Following the standard terminology, we call the N(0152) the specific
entropy of PÃ. In a similar way, we define the heat flux within the body ~‘ as
the map sending each (S E N* into the spatial field q = q(0152). In this way,
except for the presence of the dynamical temperature:) in place of 8, the
Vol. XXIX, n° 4 - 1978.
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representation (2. 6 a) of the entropy production 03C3 agrees with the one
commonly adopted in non-relativistic continuum thermodynamics (4).
Moreover, in view of our previous definitions, the heat flux q is dimensio-

nally omogeneous with the energy flux in the material rest-frame, expressed
in terms of the energy-momentum tensor T = lr(0152) as P p N(T).
With this in mind, we now state.

DEFINITION 2.1. A mathematical model of f!J is said to be constitutively
simple if and only if the equality

holds identically, for all @ E 9t*.
As it is clear from eq. (2.8), under the simplifying assumption (2.9) the

spatial projection ,~(s) of the entropy-flux four vector is determined uni-

quely in terms of and T, thus reducing the number of independent quantities
involved in the constitutive characterization of the model.

In the following, we shall systematically embody the requirement of
constitutive simplicity in the set of a priori assumptions concerning the nature
of the models in study. From a physical viewpoint, this means essentially
that from here on, we shall restrict our attention to an ideal class of continua,
in which the only contribution to the energy flux in the material rest-frame [8]
comes from the phenomenon of heat conduction. In this connection, see
also [1, 2].

2.3. The purely mechanical scheme

As the simplest application of the concepts outlined in § 2.2, we shall now
discuss the so called purely mechanical scheme of f?À. Besides being physically
interesting on its own, the latter will also provide a useful reference for all
subsequent developments. By definition, we shall regard the purely mecha-
nical model as being completely characterized by the following structural

properties :
1) Identification of the representative space 9t* with the class 2 of ther-

mokinetic processes (corresponding to the assumption of holonomy of the
model, see § 2.1).

2) Identification of the dynamical temperature 3 with the absolute tem-

perature, i. e. choice of the constitutive equation 3 (0152) = o.
3) Vanishing of the heat flux q for all processes C E 9t*. Recalling eqs. (2 . 8),

(2.9), this gives rise to the representations

(4) On the occurrence of the same temperature 8 in both expressions (2.6 a), (2.8),

de Henri Poincaré - Section A
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with S03B103B2V03B2 = O. The notation in eq. (2.11) is conventional; the scalar field s
and the spatial tensor field S are called respectively the specific internal energy
and the stress tensor of R.

4) Vanishing of the entropy production r for all processes 0152 E 9t*. Recalling
eq. (2.6 ~f) and properties 2), 3) stated above, this condition is expressed by
the constraint

for all C E U*. An equivalent formulation may be given by introducing the
specific free energy

By eqs. (2.10) (2.13) we have then

which is easily recognized as the condition for the stress S to be entirely
recoverable [42].
The previous properties put rather severe restrictions on the class of phe-

nomena that can be fitted into the purely mechanical model ; for example,
it is self evident that eqs. (2.10), (2.11), (2.14) preclude at the outset any
possibility of accounting for such effects as heat conduction, viscosity, etc.
The deep reason for such a restrictive interpretation of the model will become
apparent after the analysis of § 3.

Collecting all previous results, we conclude that, within the purely mecha-
nical scheme, the most general model of the continuum ~ relies on the choice
of three constitutive equations, namely

in which E, N and S denote suitable maps defined over the space X of thermo-
kinetic processes, i. e. suitable functionals of the arguments E, 0(’), subject
to the necessary requirements of causality and differentiability, as well as
to the a priori constraint expressed by eq. (2.12) (5).
Remark 2.1. 2014 To get an idea of the wide variety of models embodied

by the representation (2.15) of the constitutive equations notice that, in
principle, the functional dependence on the congruence 3 may imply the
dependence on any kinematical or geometrical object associated with 3
(deformation gradient, rate-of-strain tensor, etc.), with the only limitations
posed by the constraint (2.12), and by the general principles of continuum

{5) A more precise representation of the constitutive equations, accounting explicitly
for the causality requirement, would be eM = 03B8x(.)), etc., where, for each event
x E ~4, the symbols ~x, ~(’) denote the restrictions of the congruence E and of the tem-
perature field 9( . ) to the closed region bounded by the past null cone with vertex at x.

Vol. XXIX, n° 4 - 1978.
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mechanics (causality, frame indifference, etc.). Similarly, the dependence
on the field 0(’) may involve the dependence on the value 8(x) of the tem-
perature at any event x E 1/4’ or on the temperature gradient 0~), etc.,
or even on the whole past history ~(’) of the temperature field.

3. THE DYNAMICAL APPROACH

3.1. Formulation of the problem

i) The model described in § 2.3 represents a higly idealized situation, in
which all irreversible effects are purposely neglected. In order to set up a
more complete picture of the continuum ~, we shall now examine how the
phenomena of heat conduction, and heat production by internal dissipation
can be framed within the mathematical scheme developed in § 2.1.
To start with, let us consider first the case in which the only possible cause

of irreversibility comes from heat conduction. In this case, the spatial reso-
lution of the energy-momentum tensor of R in the material rest frame [8]
reads

with 0, = 0. In strictly logical terms, eq. (3.1) is nothing but
a definition of the quantities E*, q, and S*. In particular, the spatial vector
field q = ~ Q9 %(T) describes the energyflux associated with ~ in the mate-
rial rest frame. Following Eckart [1], we shall identify the latter with the
heat flux within the body ~, in complete agreement with the notation already
employed in § 2.2. As far as the other terms involved in the representa-
tion (3.1) are concerned, it is usually admitted that, in the absence of inter-
nal dissipation, they retain the same physical meaning as in the purely
mechanical model. A closer investigation, however, reveals that such a
viewpoint is not completely satisfactory, and can be regarded at most as
an approximation of a more realistic scheme. In fact, on the basis of the
mass-energy equivalence principle, the presence of a heat flux q in the
material rest-frame implies the simultaneous existence of an associated
momentum density (as implicit in eq. (3.1)), and thus also of a kinetic
energy density, and of a momentum-flux density. In principle, all these terms
should be present in the representation (3.1) of the energy-momentum
tensor, thus affecting the whole set of components and not merely the
mixed projection ~ @ .(T).
This viewpoint, that in a sense generalizes Kaliski’s idea of thermal iner-

tia [29], can be given a quantitative meaning by observing that, on the basis
of the previous discussion, the phenomenon of heat conduction is unavoi-
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dably endowed with a set of mechanical attributes. To account for these
-and, in -particular, to assign definite expressions both to the kinetic energy
density and to the momentum-flux density associated with is conve-

nient to regard heat conduction as an effective 

expressing the fact that, under suitable circumstances, a certain amount m03B40
of energy density of the continuum R can be set in motion with velocity v rela-
tive to the material rest frame S (6). Setting as usual y = (1 - v2)-1 2, 5 = 
the previous argument is synthesized by the equation

with vaV" = 0. The kinetic energy density is then given by (y - and
the momentum-flux density by Therefore, denoting by ~ = N(E, 9(’))
the specific entropy of ~, we may tentatively replace the representation (3.1)
of the energy-momentum tensor by the equivalent expression

where T = T(E, 0(’)) has the same formal structure as the energy-momen-
tum tensor involved in the purely mechanical picture of ~, namely

with the a priori constraint

while W collects all other contributions to T not explicitly included in the
other terms at the right-hand side of eq. (3.3). In particular, the requirement
of consistency of eq. (3.3) with eq. (3 .1 ) implies

To this we add the further constraint

expressing the condition that, in the absence of heat conduction, the repre-
sentation (3.3) of the total energy-momentum tensor should agree with
the one employed in the purely mechanical model of R (i. e. T = T for
~ == 0).
The previous scheme is easily generalized to the case when the class of

(g) For notational convenience, we shall measure all velocities in units of c (c = speed of
light in vacuo), so that v is a dimensionless spatial vector field subject to the constraint
v2  1. 

-
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irreversible phenomena that may take place within the body ~ includes
possible effects of heat production by internal dissipation. In this case, the
simplest conjecture is to admit that the presence of these effects contributes
additively to the total energy-momentum tensor T, through a dissipative
term DW, to be added to the other terms at the right-hand side of eq. (3 . 3).
Setting for simplicity

we have then the complete expression

Comparison with eq. (2.9) shows that, likewise W, also the tensor DW is
subject to the a priori constraint

expressing the fact that, even in the more general case, the only contribution
to the energy flux in the material rest-frame [8] should come from heat
conduction.

ii) From a constitutive viewpoint, the previous arguments can be put on
rational grounds by identifying the representative space 91* of R with the
abstract space formed by the totality of elements of the form

(E, 0(’), 03B40(.), v(.)) (see §2.1,2). The internal response of R is then comple-
tely described in terms of four constraints

subject to (he conditions already oulined in § 2.1, 3. In particular, a model
will be said to be separable if and only if the associated class U ~ U* of
admissible processes admits at least one representation of the form (3.9)
in which one of the functionals (say depends only on the arguments
E, ~(’), ~o(’~ but not on ~(’) (while the remaining functionals will generally
involve the whole set (E, 8( ~ ), ~o( ~ ), ~(’))’ The situation is formalized by

introducing a further abstract space generated by the totality of elements
of the form (E, 9(’), ~o(’)). Then, a model is separable if and only if eqs. (3 . 9)
may be splitted into the system

in which ~o) is a map of the space ~6 into the class of scalar fields over "Y 4’
With this in mind, let us now analyse the construction of a mathematical

model for the continuum ~, along the lines already indicated in § 2. In this
connection, a possible line of approach is suggested by the representa-
tion (3.2) of the heat flux. In four-dimensional language, the latter has its
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natural counterpart in the introduction of an ideal physical system L2014hence-
forth called the heat subsystem of R2014characterized by the energy-momen-
tum tensor

with

(whence UXUa = - 1, = - y). In view of eqs. (3.2), (3 .10 b), the
tensor (3.10 a) admits the equivalent expression

in which all terms except m03B4V03B1V03B22014represent meaningful quantities that,
on the basis of eq. (3.7), should contribute to the total energy-momentum
tensor T. In this respect, the term is partly exceptional since, besides
the kinetic energy density (y 2014 includes also an additional contri-
bution to the total energy density in the frame of reference [3], due to the
rest energy m~o associated with the heat subsystem.
To account for this fact, the next logical step is to regard the entire physical

system ~ as a binary system, formed by two interacting subsystems : the heat
subsystem 2, and a further subsystem G, called the material substratum
of ~. The natural suggestion coming from the previous discussion is then
to assign to G the energy-momentum tensor

In this way, taking eqs. (3 .4 a, b) into account, it is easily seen that the
description of the substratum ~ relies on the choice of three constitutive
equations

In view of eqs. (3 .11 )-(3 .13), all attributes of G are expressed solely in terms
of the variables E, 0(’), ~o(’)’ From this, recalling our previous definitions,
we conclude that the concept of material substratum has a primitive cha-
racter (i. e. it admits a constitutive characterization of its own, indepen-
dently of the kinematical behaviour of the heat subsystem) if and only if
the resulting model of the continuum ~ is separable. Under the stated
assumption, the representative space of G may be identified with the abstract
space ~ci introduced above, while the corresponding constitutive characte-
rization is given explicitly by eqs. (3.11)-(3.13), completed by the constraint
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relating the evolution of the field c5o( . ) to the thermokinetic variables E, 9( ~ ).
Collecting all previous results, we now observe that, on the basis of

eqs. (3 .10 a, b), (3 .11 ), the total energy-momentum tensor (3 . 7) may be
written synthetically as

where, likewise M and Q, also the tensor W is to be expressed in terms of
the variables E, 0(’), 03B40(.), v(.). Eq. (3 .15) is perfectly consistent with the
binary representation of the system ~ discussed above, and suggests a natu-
ral interpretation of W as an interaction tensor, accounting for the possible
contributions to T coming from the mutual interactions between the subsys-
tems G and L.

3.2. Dynamics of the heat subsystem

i) As a subsequent step in our analysis, we shall now examine the nature
of the constraints (3 . 9) involved in the representation of the internal response
of the continuum ~. As pointed out in § 2.1, the argument relies on the
introduction of a suitable characterization of the evolution of both fields

~o(’)~ ~(’) in terms of the thermo kinetic variables E, 0(’). In this respect,
it is then clear that the choice of the constraints (3 . 9) has its physical counter-
part in the study of the dynamics of the heat subsystem ~, or, more generally,
of the mutual interactions between L and the substratum G. Both aspects
of the problem, the constitutive one and the dynamical one, can be dealt
with on a unified basis by introducing the quantities

expressing respectively the four-force density acting on il, and the power
density lost by the substratum ~ in the material rest-frame [3]. The analysis
may then be splitted into two parts, according to the following scheme :

1 ) Define the transverse part of the four-force f as

The spatial resolution of the four-vector (3 .17) in the material rest-frame [8]
may then be written synthetically as

where, on account of the identity U«, f ’1 = 0, the temporal component 03C0/c
satisfi es
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as it is easily checked from eqs. (3.10&#x26;), (3.18~) by direct computation.
From a physical viewpoint, the fields /~ and 7r define respectively the mecha-
nical force density and the mechanical power density acting on L in the frame
of reference [8]. Moreover, in view of eqs. (3.17), (3.18 ~, ~), it follows at
once that the study of the evolution of the four-velocity field U(. ) (or, what
is the same, of the spatial velocity ~(’)) is mathematically equivalent to the

introduction of a suitable conjecture concerning the nature of the spatial
force /, i. e. to the representation of / as a functional

over the space 9t*.

2) In a similar way, one should expect the evolution to be determined

by the knowledge of the longitudinal component -U03B1f03B1 = of
the four-force (3 .16 a). For constitutive purposes, however, a more direct
line of approach is provided by the energy-balance equation (3 .16 b). In
view of eqs. (3 .12), (3 .13 b), the latter is aheady of the required form (3 . 9),
provided only that we express the power density’ as a functional over the
space ~*, namely

n particular, 11 we regard the quantity 03B6 as determined solely by the substra-
tum ~, independently of the kinematical behaviour of the heat subsystem,
eo. 3. 20 simplifies to

With this ansatz, eq. (3.16 b) is automatically of the form (3 .14), thus giving
rise to a separable model of in the sense clarified in § 3 .1.

In any case, collecting all previous results, we conclude that the choice
of the constitutive equations (3.19), (3.20) (or (3.19), (3.20’)) is sufficient
to provide a complete characterization of the internal response of the conti-
nuum in the sense required by eqs. (3.9).

ii) From a physical viewpoint, the meaning of the quantity’ is further
clarified by an analysis of the energy exchanges between the subsystems G
and ~. Among other advantages, the argument will also provide a deeper
insight into the nature of the interaction tensor W involved in the represen-
tation (3.15) of the total energy-momentum tensor T.
To start with, we observe that, in view of eqs. (2.1), (3.15), (3.16 a),

(3 .17), (3 .18 a), the temporal projection of the four-force f in the material
rest-frame [8] may be expressed in either forms
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From these, taking eq. (3.16 &#x26;) and the definition (3.6) of W into account,
we get the further relation

where, for simplicity, we have introduced the notation

Due to the definition of 7r given by eq. (3 .18 b), it is then clear that the diffe-
rence P(f) - 03C0 represents the non-mechanical part of the power density
transferred to the heat subsystem !2 in the material rest-frame [8]. In this
respect, all terms at the right-hand side of eq. (3 . 21) may therefore be inter-
preted as effective contributions to the process of heat production taking
place within the body ~, as confirmed by the fact that their sum coincides,
up to the factor yc, with the four-divergence of the heat four-current 
The role of the terms - and D~c is then quite obvious. Indeed, on
the basis of the energy balance equation (2. 5 a), the quantity - 
coincides with the external power density P(b) acting on R in its own rest
frame. In this sense, the latter has always a strictly non-mechanical nature,
and may be taken as a description of the external contributions to the pheno-
menon of heat production. In a similar way, the presence of the term D~ at
the right-hand side of eq. (3 . 21 ) is fully justified by eq. (3 . 22 a), and by
the identification of "W with the dissipative part of the interaction tensor W.
The nature of the remaining term 03B303B6*, however, is quite different, and

involves a precise analysis of the energy exchanges between the subsystems R
and !2. This viewpoint is supported by the fact that, in the absence of heat
conduction (v --_ 0), eqs. (3 . 5 b), (3.18 b), (3.22 b) would imply (* = ~, thus

showing that, in this special case, the whole amount’ of power density
lost by the substratum ~ in the material rest-frame [8] would be converted
entirely into invariant mass density of the heat subsystem. In the general
case (~ 5~ 0), the situation is more delicate, due to the necessity of accounting
also for the mechanical interactions between ~ and ~. This means that, in

principle, part of the power density lost by the material substratum may be
transferred to L in the form of mechanical work, and has therefore to be
subtracted from the heat production mechanism. In full generality, the argu-
ment may be formalized by admitting the existence of a linear relation of
the form

in which the coefficient x(0 ~ 1 ) determines the exact contribution of
the substratum ~’ to the mechanical power density 7r. Comparison with
eq. (3 .22 b) then yields the identification
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expressing the dynamical contribution of the tensor W to the energy

exchanges between ~ and ~. On the basis of eqs. (3.23 a, b), the type of
interaction mechanism giving rise to the effect described by eq. (3.22 b) may
then be understood as follows : the substratum ~ and the tensor W, together,
supply the whole amount of mechanical power density 03C0 acting on L in the
material rest-frame [8]. The respective contributions are determined by the
coefficient a and are respectively and ( 1 - The remaining amount
~* == ~ 2014 of power density lost by !/ and not converted into mechanical
work is entirely « transformed into heat », thus determining a corresponding
increase in the invariant mass density of the heat subsystem (compare
eq. (3.21) with eq. (3 . 22 b), both divided by the common factor y). The
heat so produced, however, is delivered by !/ at rest in the frame of refe-
rence [8] (as implicit in the definition of (* given by eq. (3.23 a)), and has
therefore to be accelerated to the velocity v, in order to be embodied by the
heat subsystem. The necessary amount of mechanical power-corresponding
to a supply of kinetic energy per unit time equal to (y - provided
entirely by the interaction tensor W, through the first term at the right-hand
side of (3 . 23 b). As a result, the total amount of non-mechanical power den-
sity transferred to the heat subsystem in the frame of reference [8] through
the above process is ( + = (* + (y - 1)(* = ~.incomplete
agreement with eq. (3.22 b).
The previous discussion has its natural counterpart in the representation

of the total four-force density / acting on the heat subsystem ~. Taking
eqs. (3.16~), (3 .17), (3 . 21) into account, the latter may be expressed syn-
thetically as

where, in view 0 the stated assumptions, the contribution

has to be regarded as coming entirely from the substratum ~, and from the
interaction tensor VV. According to this viewpoint, the four-vector k may
be further splitted into

in which the contribution k is now due entirely to the material substratum.
The nature of k is then completely determined by the pair of identifications

expressing respectively the conditions a) that the total amount of power
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density’ lost by the substratum ~ is transferred entirely to the heat sub-
system !2, and b) that the substratum G supplies only an amount 03B103C0 of the

mechanical power, and thus also an amount af of the mechanical force

acting on L in the material rest-frame [E]. Taking eqs. (3 .18 a, b) into
account, the content of eqs. (3 . 27 c~, b) may be summarized into the single
relation

In view of eqs. (3.23 ~), (3.25), the latter may be written in the equivalent
form

*

with inverse

Moreover, on the basis of eq. (3.28) it is easily seen that, once the structure
of the coefficient a has been fixed, the choice of the constitutive eq. (3.19),
(3.20) is mathematically equivalent to the introduction of a corresponding
representation

expressing the four-force k as a functional over the space 9t*.

iii) Concerning the physical interpretation of the coefficient oc, a possible
suggestion comes from eq. (3.29). The latter shows that the definition of
a is directly related to the introduction of a suitable conjecture concerning
the relation between the four-vectors k and k.

To analyse this aspect, let us denote temporarily by the « heat rest-
frame », i. e. the co-moving frame of reference associated with the heat
subsystem ae.

Then, given an arbitrary infinitesimal portion A of  at any instant t’
relative to we can determine a corresponding portion Ao of material
substratum, such that the spatial regions occupied by A and Oo at the ins-
tant t’ in the frame of reference coincide (see fig. 1). In this way, the pro-
per volume 5E of A is by definition identical to the relativistic volume of do
as measured in [L]. Therefore, denoting by 03B403A30 the proper volume of Ao,
the Lorentz contraction formula gives

e now recall that, according to our previous definitions, the Minkowsky
four-force supplied by the portion Llo of material substratum at the instant t’
is precisely MEo, while the corresponding amount of four-force absorbed
by the portion A of heat subsystem is ME. The simplest conjecture is then
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FIG. 1. - Two dimensional space-time diagram of the relation between A and 6.0.

to assume the equality between these four-forces. Comparison with

eqs. (3.29), (3.30) shows that this is equivalent to the ansatz

corresponding to the identification

According to this viewpoint, the contribution of the tensor W to the mutual
interactions between the subsystems G and L is then completely explained
in terms of the transformation law for spatial volumes, i. e. it accounts for a
purely relativistic effect, with no classical analogue. In particular, in view of
eqs. (3.26), (3 . 31 a~, we have the identification

The latter, together with eq. (3.27 a), points out another important feature
of the ansatz (3 . 31 a). In fact, taking eqs. (2.1), (3 .27 a), (3 . 32) and the
representation (3.11)-(3.13) of the material substratum into account, we
have the identity

Setting for simplicity
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the latter may be written m the equivalent term

expressing a sort of « generalized recoverability condition)) for the tensor W,

in the sense that, likewise S«fJy «;/1&#x3E; also the power density (or, more

precisely, the sum + is derivable from the generalized
potential ~ defined by eq. (3.33).
As a concluding remark we observe that, with the identification (3.31 b),

the representation (3.28) of the four-force k simplifies to

while the content of eqs. (3.24), (3.31 a~, (3.32) is summarized into the pair
of relations

These, together with the balance equations (2.3), provide the formal basis
for the study of the problem of motion for both subsystems G and L, under
the effect of the mutual interactions, and of the interactions with the external
world.

3.3. Entropy inequality

To complete our mathematical scheme, we still need an explicit formu-
lation of the 2nd law of thermodynamics for the class of models in study.
In view of eqs. (2. 6 a, bj, the argument relies essentially on the introduction
of a suitable assumption concerning the nature of the dynamical tempe-
rature 8. The analysis is greatly simplified by introducing the dimensionless
quantity

In this way, taking eqs. (2.8), (3.2) into account, we get the explicit repre-
sentation

whence, recalling eq. (2.7)
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so that the entropy production (2.6 a) may be written explicitly as

From this it follows at once that the simplest conjecture concerning the
nature of the coefficient v is provided by the ansatz

corresponding to the identification

Then recalling eq. (3.2) and the representation (3.18 b) of the mechanical

power 7T, eq. (3.38) reduces to

so that the entropy inequality (3.6 &#x26;) takes the simple form

which is almost identical to the corresponding classical expression, except
for the presence of the mechanical force f at the left-hand side of eq. (3 . 40).

According to the viewpoint of Coleman and Noll, the inequality (3.40)
must hold identically, for all admissible processes of the system ~. From
this, taking the representation (3.22 a) of the dissipative power into
account, we conclude that the 2nd law restricts the class of possible models
of by posing an a priori constraint on the choice of the functionals

On the contrary, the inequality (3.40) does not provide any information on
the nature of the quantity ~ ; in particular, it does not indicate any preferred
choice between the alternatives expressed respectively by eqs. (3.20) and

(3 . 20’). From an axiomatic viewpoint, this means essentially that the 2nd law
leaves us the freedom of completing the mathematical scheme developed
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so far, by adding a further hypothesis on the structure of the models in study.
The natural suggestion coming from the analysis of § 3.1, 3.2 is then to
include among the properties of the model the requirement of separability,
as expressed by the ansatz 

-

As pointed out 3 . 2, this corresponds to assigning to the substratum ~ the
role of a primitive concept, completely characterized by the four functionals

all defined over the representative space and subject to the a priori
constraints expressed by eqs. (3.13 a, b), (3.16 b). Even more important than
that, the freedom in the choice of the functional (3 . 42) is reflected in the fact
that, in the construction of a mathematical model for the continuum ~,
the constitutive characterization of the material substratum must be given
a priori, independently of any restriction coming from the 2nd law.

4. APPLICATIONS

For illustrative purposes, we shall now indicate how the results established

in § 3 can be applied to the study of two typical situations of actual physical
interest, namely heat conduction in non-dissipative media, and internal
dissipation in non-conducting materials. In both cases we shall simply
sketch the main ideas involved in the development of the theory, leaving
it to a subsequent paper to fill the necessary details.

A) In the case of a non-dissipative material, the mathematical scheme
developed in § 3 is completed by the further constraint

As a result, the entropy inequality (3.40) simplifies to

For isotropic media, the simplest ansatz consistent with the requirement (4 . 2)
is

rc being a non-negative constant, depending on the properties of the material,
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and called the conductivity (7). Using the simplified notation

From this, recalling our previous results, we conclude that, once the consti-
tutive characterization (3.43) of the material substratum has been fixed,
eqs. (4.1), (4.4), together with eqs. (3.34), (3. 35 a, b), provide a complete
picture of the dynamics of heat conduction in isotropic, non dissipative
media.
As already stated above, a detailed analysis of the general problem will

be dealt with in a subsequent paper. For the present purposes it is sufficient
to remark that, in the classical limit, the spatial force f’ may be identified
with the (substantial) time derivative of the momentum density c- 2 q asso-
ciated with the heat flux. In this case, setting for simplicity

and using the standard notation of Classical Mechanics, eq. (4.4) reduces to

which coincides with the equation originally proposed by Cattaneo [9]
(see also Vernotte [43], Chester [44]) to account for the finite speed of pro-
pagation of thermal waves in material media. Besides illustrating a relevant
feature of the dynamical scheme developed so far, the previous result is
also important in order to get an idea of the order of magnitude of the energy
density associated with the heat subsystem. In fact, if we accept as a
phenomenological result the viewpoint that LC is connected with the commu-
nication time between phonons (phonon-phonon collisions), a reasonable
estimate seems to be 10 -1 ° sec for most common metals [44]. The
identification (4.5) then yields 3.10-9 cal.cm - 3, thus showing that
the contribution of thermal inertia to the total energy-momentum tensor
of R is indeed very small.
As a further comment on eq. (4 . 3) we observe that, for ~ =E 0, eqs. (3.10 &#x26;),

(3.17), (3 .18 a, b~ yield immediately 

whence also

(’) A more general choice, accounting also for possible anisotropies, would be
= - K rJ.13(O,13 + 03B8f03B2/m03B4), K03B103B2 = K (1.13 CB:, 03B8(.)) being any positive definite spatial tensor

field over 1"’"4"
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The term at the right-hand side of eq. (4.6~) is usually referred to as the
pocket temperature, and is considered as the natural relativistic extension
of the temperature gradient [2, 21, 24]. This viewpoint is confirmed by
eq. (4. 3). In fact, for K: 7~ 0, the latter shows that a necessary condition for
thermal equilibrium within the body ~ is the vanishing of the pocket tem-
perature (4. 6 b) throughout the whole evolution of 

B) In the case of non-conducting materials, the mathematical scheme
developed in § 3 is completed by the a priori constraint

Under the stated assumption, the representative space of R may be identified
at the outset with the abstract space ~ introduced in § 3 .1. The constitutive
characterization of the spatial force j is then trivial (see e. g. (4.6~)), so
that the whole problem is reduced to the study of the internal dissipation
tensor DW. In view of eq. (3.8), the latter may be represented symboli-
cally as 

N 

,

with Sa~ = = 0. This, together with eqs. (3.2), (3.22~), (4.7),
allows to express the entropy inequality (3.40) for the class of material in
study in the form 

,

where, for simplicity, we are now indicating by

the tensor of R (8).
In the case C;o = 0, it would be natural to identify S with the 

stress tensor of R, and - = 03B103B2D03B103B2 with the associated 
What makes the present situation different, however, is the

presence of the extra term ~o in both equations (4.8), (4.9). In view of
eq. (4.8), this term contributes additively to the total energy density of R in
the material rest-frame [3]. Moreover, on the basis of eqs. (3.21), (4.9), it
is easily seen that the contribution of the internal dissipation to the process
of production is not expressed solely by the power density 03B103B2D03B103B2
associated with the stress tensor S, but includes also the additional term
2014 Both aspects can be given a rational interpretation by intro-
ducing the concept of relaxation. Quite generally, this consists in

(8) Here and in the following, round brackets will indicate symmetrization of the indices.
The presence of the factor c in eq. (4.10), as well as in the definition of the « time deriva-
tives }) introduced below, is due to the normalization of the four-velocity field ~( . ) adopted
in the text.

Poincaré - Section A



449RELATIVISTIC CONTINUUM THERMODYNAMICS

admitting that the mechanical work done by the stress tensor S is not

converted directly into heat, but is temporarily stored by the system ~ in
the form of an extra-energy density m ~o, at rest in the frame of reference [3].
This accounts for the presence of the term at the right-hand side
of eq. (4. 8). More precisely, the previous argument suggests that we regard
DW as the energy-momentum tensor of a third ideal subsystem ~ of 

completely characterized by its own invariant energy density and its
own mechanical stress S. In view of eq. (3.22 a), the quantity D~ may then
be identified with the power density lost by ~ in the material rest frame [3].
From eq. (3.21) we already know that this quantity is transferred entirely
to the heat subsystem ~. What is left to do in order to obtain a precise
characterization of the energy exchanges between the subsystems D and L
is then to introduce a suitable assumption concerning the nature of ~7r.
This is precisely the role of the thermal relaxation hypothesis : in its simplest
formulation, the latter consists in the conjecture that the subsystem ~ is

intrinsically unstable, i. e. it has a natural tendency to decay, by transferring
its energy to the heat subsystem at a rate m~o/z, ~ being a characteristic
parameter of the material in study, called the relaxation time.

In view of the stated results, the previous hypothesis is summarized into
the energy balance equation

corresponding to the ansatz

Eq. (4 .11 ) may be expressed more conveniently by introducing the notation

In this way, setting for simplicity

and recalling eqs. (3 . 22 a), (4.12), we can replace eq. (4 .11 ) by the equi-
valent relation

In the following, we shall call eq. (4.14) the thermal relaxation equation.
The latter, together with eq. (4.12) and with the dissipation inequality

summarizes all aspects discussed above. In particular, if we exclude as
unphysical any situation in which the tensor DW diverges in the asymptotic
past ~-~ - 00, it is easily seen that eq. (4 .14) determines the field 
uniquely in terms of DS and of the kinematical behaviour of the material
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substratum. From this it follows at once that the inequality (4.15) provides
an effective constraint on the nature of the tensor DS. Moreover, in the limit

’t -+ 0, eqs. (4.12), (4.14) imply D03C0 = = - S = - DS,
thus showing that, in the absence of thermal relaxation, the scheme developed
above yields back the familiar results of Continuum Mechanics.
The previous arguments strongly suggest that we identify DS with the

dissipative stress tensor of the continuum 14. Among the various choices
of DS consistent with the inequality (4.15), a particularly significant one is

provided by the Maxwell-type constitutive relation

where 03BB and ,u are two constants, characteristic of the material in study,
called respectively the bulk viscosity and the shear viscosity, haa ’--’ + 

is the spatial metric tensor in the frame of reference [8], already introduced
in eq. (2.1), vci is the so called standard time derivative relative to [8],
whose action on spatial covariant tensor fields is expressed in terms of the
Lie derivative 2 v and of the tensor D according to the equation (9)

N N

The ansatz (4.16) may be stated more synthetically by introducing the

relaxed stretching tensor D, defined in terms of D and of the relaxation time 03C4

by the equation
~ ~ 

completed by the requirement of regularity in the asymptotic past ~ -+ - 00.
With this definition, eq. (4.16) may be written in the equivalent form

while the thermal relaxation equation (4.14) is transformed into
~ 

which admits

as the unique solution that does not diverge in the limit t 2014~ 2014 co. A formal
proof of eqs. (4.19 a, b) will be given in the Appendix.
From a physical viewpoint it is worth noticing that both eqs. (4.19 a, b)

(9) The geometrical meaning of the operator (4.17), as well as its role in the construction
of a spatial tensor analysis in a given frame of reference [8] are discussed extensively in

refs . [30, 31 ].
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are formally identical to the corresponding classical equations involved in
the Navier-Stokes theory of viscosity, except for the presence of the relaxed

*

stretching tensor D in place of D. In particular, the requirement of consis-

tency of eq. (4.19 b~ with the inequality (4.15) is summarized into the pair
of conditions

which agree with the classical inequalities of Duhem and Stokes for the shear
viscosity  and the bulk viscosity 03BB (see, e. g. [45], chap. 2).
As a concluding remark we recall that, for 03C4 = 0 (corresponding to the

identification D = D) the inequalities (4.20) are at the basis of Duhem’s
theorem, according to which acceleration waves are impossible in a linearly
viscous (Newtonian) fluid. On the contrary, for r 5~ 0, the type of consti-
tutive relation expressed by eq. (4.16) does no longer preclude the existence
of acceleration waves. A detailed analysis of this point is beyond the scope
of the present work. In this connection, the reader is referred to the extensive
analysis of Coleman, Greenberg and Gurtin [26], concerning wave propa-
gation in the general context of Maxwellian materials.
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APPENDIX

i) De,finition and , formal properties of the standard time derivative. #

Quite . generally, a time derivative - in the frame of reference [8] is defined  as a derivation V o
of the tensor algebra over V4, subject to the following j requirements [30] :

process in the frame of reference [3], based on the projection operators (2.1).

Denoting by Lv the Lie derivative in the direction V, properties a) and b) together

imply that the action of the operator V 0 on an arbitrary tensor field Z has the general
structure

in which the quantities form the components of a mixed tensor field of rank 2.

Moreover, taking the identities
~/-.B_~ - f3

into account, the content of property c) is summarized into the pair of relations

From this, recalling the representation (4.10) of the rate-of-strain tensor D, it follows at

once that the most general choice consistent with the stated requirements is given
explicitly by

where A denotes an arbitrary antisymmetric spatial tensor field, dimensionally homo-

geneous with D. The standard time derivative V~ relative to [3] is then defined as the

distinguished time derivative determined by the ansatz A = 0. With this choice, the action

of ~7 0 on an arbitrary covariant spatial tensor neld Z is represented in the form

which agrees with eq. (4.17).

ii) (4 .19 a, b).

In view of the definition (4.18) of the relaxed stretching tensor D, taking the properties

of the operator Q o into account, the constitutive equation (4 .16) may be written in the
equivalent form
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which admits

as the unique solution that does not diverge in the limit t ~ 2014 ~. This esta-

blishes eq. (4.19 a). In a similar way, on the basis of eqs. (4.18), (4.19 a), the thermal
relaxation equation (4.14) reads

which admits

as the unique solution which is regular at t -~ 2014 oo. 0
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