Completeness of wave operators in two Hilbert spaces
Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Volume 30 (1979) no. 2, pp. 109-127.
@article{AIHPA_1979__30_2_109_0,
     author = {Schechter, Martin},
     title = {Completeness of wave operators in two {Hilbert} spaces},
     journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
     pages = {109--127},
     publisher = {Gauthier-Villars},
     volume = {30},
     number = {2},
     year = {1979},
     mrnumber = {535368},
     zbl = {0444.47014},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1979__30_2_109_0/}
}
TY  - JOUR
AU  - Schechter, Martin
TI  - Completeness of wave operators in two Hilbert spaces
JO  - Annales de l'institut Henri Poincaré. Section A, Physique Théorique
PY  - 1979
SP  - 109
EP  - 127
VL  - 30
IS  - 2
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1979__30_2_109_0/
LA  - en
ID  - AIHPA_1979__30_2_109_0
ER  - 
%0 Journal Article
%A Schechter, Martin
%T Completeness of wave operators in two Hilbert spaces
%J Annales de l'institut Henri Poincaré. Section A, Physique Théorique
%D 1979
%P 109-127
%V 30
%N 2
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1979__30_2_109_0/
%G en
%F AIHPA_1979__30_2_109_0
Schechter, Martin. Completeness of wave operators in two Hilbert spaces. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Volume 30 (1979) no. 2, pp. 109-127. http://archive.numdam.org/item/AIHPA_1979__30_2_109_0/

[1] Tosio Kato, Perturbation Theory for Linear Operators, Springer, 1966. | Zbl

[2] A.L. Belopolskii and M.S. Birman, The existence of wave operators in scattering theory for pairs of spaces, Izv. Akad. Nauk SSSR, t. 32, 1968, p. 1162-1175. | MR | Zbl

[3] Tosio Kato, Scattering theory with two Hilbert spaces, J. Func. Anal., t. 1, 1967, p. 342-369. | MR | Zbl

[4] Tosio Kato, Two spaces scattering theory, J. Fac. Sci. Univ. Tokyo, t. 24, 1977, p. 503-514. | MR | Zbl

[5] M.S. Birman, Scattering problems for differential operators with perturbation of space, Izv. Akad. Nauk SSSR, t. 35, 1971, p. 440-445. | MR | Zbl

[6] V.G. Deic, The local stationary method in the theory of scattering with two spaces, Dokl. Akad. Nauk SSSR, t. 197, 1971, p. 1247-1250. | MR | Zbl

[7] V.G. Deic, Application of the method of nuclear perturbation in two space scattering theory, Izv. Vyss. Ucebn. Zaved, 1971, p. 33-42. | MR

[8] Martin Schechter, A unified approach to scattering, J. Math. Pures Appl., t. 53, 1974, p. 373-396. | MR | Zbl

[9] Tosio Suzuki, Scattering theory for a certain nonsefadjoint operator, Mem. Fac. L. b. Arts Educ., t. 23, 1974, p. 14-18.

[10] J.R. Schulenberger and C.H. Wilcox, Completeness of the wave operators for perturbations of uniformly propagative systems, J. Funk. Anal., t. 7, 1971, p. 447-474. | MR | Zbl

[11] Tosio Kato and S.T. Kuroda, The abstract theory of scattering, Rocky Mtn. J. Math., t. 1, 1971, p. 127-171. | MR | Zbl

[12] Tosio Kato, Wave operators and similarity for some nonselfadjoint operators, Math. Ann., t. 162, 1966, p. 258-279. | MR | Zbl

[13] R.B. Lavine, Commutators and scattering theory II, Indiana Univ. Math. J., t. 21, 1972, p. 643-656. | MR | Zbl