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Irreducible kernels and bound states

in 03BBP(03C6)2 models (*)

Hans KOCH

Departement de Physique Theorique, Universite de Genève
1211 Genève 4, Switzerland

Henri Poincaré, Section A :

Vol. XXXI, n° 3, 1979, Physique ’ théorique.

ABSTRACT. - We analyze the mass spectrum below the two particle
threshold for weakly coupled ~(~p)2 quantum field models. Criteria for the
existence of a two particle bound state and an asymptotic expansion for
its mass are given in terms of the coefficients of the interaction polynomial.
The analysis is based on analyticity properties and perturbation theory
for n-particle irreducible kernels. The same methods are applied to the
~p4 theory with strong external field to prove the existence of exactly
one two particle bound state.

RESUME. - Nous analysons Ie spectre de masse en dessous du seuil
a deux particules dans des modeles ~,~(~p)2. Nous donnons des criteres
pour 1’existence d’un etat lie a deux particules, et un developpement asympto-
tique pour sa masse en termes des coefficients du polynome d’interaction.

L’analyse est basee sur des proprietes d’analyticite et la theorie de per-
turbation pour des noyaux n-particules irreductibles.

Les memes methodes sont appliquees a la theorie ~p4 avec un grand
champ exterieur pour demontrer 1’existence d’un seul etat lie a deux

particules.

(*) The author’s doctoral thesis. Supported in part by the Swiss National Science
Foundation.
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INTRODUCTION

In this paper we study the two particle bound states in weakly coupled
boson quantum field theories

where ~ is a polynomial of the form

For the construction of such theories the passage to imaginary time fields
and Euclidean fields as proposed first by Symanzik turned out to be extre-
mely useful.

In the Euclidean framework a set of symmetric Schwinger functions
S~n~((tl, _xl), . - . , ~)) is first constructed satisfying the Osterwalder-
Schrader axioms They define in a unique way a Wightman field
theory such that

where II is the permutation for which

and

de l’Institut Henri Poincaré - Section A



175IRREDUCIBLE KERNELS AND BOUND STATES

are the Wightman functions of the theory. The field ~p(t, ~) obtained by this
procedure satisfies the field equation (1) [SCH].

In our case (writing = and xi = xi))

where denotes the Gaussian measure on g"(!R2) with mean zero and
covariance C(x, j~) = ( - 0 + mo) -1{x, y). It is known among other things
that ([GJS], [D], [EEF], [DE], [OS])
the so constructed functions satisfy the Osterwalder-Schrader axioms ;
- the Schwinger functions are analytic in A for À in the region

j I  E, &#x3E; 0 and perturbation theory is asymptotic;
there is a unique vacuum and a mass gap &#x3E; 0;
the mass shell p 2 - m 2(~,) is isolated, ~(/L) 2014 I = a(~,), with

no other spectrum up to 2m o - ~(~)~
- the physical mass m(~,) (a pole of the two point function) and the field

strenght (its residuum) are C°° in À for small ~, &#x3E; 0;
the S-matrix is non trivial.

After these general results the efforts in ~(p)2 were concentrated on the
study of the mass spectrum up to 3mo - ~(~,). For even theories two results
in this direction are :

2014 Below 2m(~.) the mass spectrum is discrete and of finite multipli-
city [SZ] ;

2014 If the coefficient C4 of in the interaction polynomial is positive
then there is no mass spectrum in the (open) interval (~(~), 2m(~,)) [SZ] and
in the case c4  0 there is exactly one two particle bound state and its
mass mB(~,)  2m(~,) is Coo in small À &#x3E; 0 [DE].
The purpose of this paper is to extend these results to general 

models i. e. models including also odd powers in the interaction polynomial.
Let S(~; k), R21 (~, ; k, p) and R(~; k, p, q) denote the Fourier transform of
the truncated two point function, the trunctead three point function and the
one particle irreducible four point function respectively. The criteria for
the occurrence of two particle bound states can be written in terms of a
kernel L and the Bethe-Salpeter kernel K :

Vol. XXXI, no 3 - 1979.



176 H. KOCH

where

More precisely let

Then with Q)

and we can prove the following

THEOREM. For À ~ 0 sufficiently small we have

1) I,f an &#x3E; 0 or if an  0 with n = 2m and y &#x3E; 1 then there is no two particle
bound state;

2) In the remaining cases there is exactly one two particle bound state for
~, &#x3E; 0. Its mass mB(~.) is Coo in ~, with

Our analysis can also be applied  to with strong external
field  (more details are given in Theorem 34, p. 231).

Annales de l’Institut Henri Section A



177IRREDUCIBLE KERNELS AND BOUND STATES

THEOREM. In the , 
~ 

+ , theory with ~, &#x3E; ( there ,

are exactly two particles with mass less than 2m( ) where ’

Their masses are 0.

We shall give a short sketch of the reasons why bound states occur.
However this can not be done without using some results of the Sections IV
and VI such as the fact that particles with mass  2m(~,) show up as poles in
the analytic continuation S(~; X) of the Euclidean two point function S(/).; k)
to momenta k = (i x, 0), or in the analytic continuation x, p, q)
of the four point function R22~; ~ p, q) (= R(~,; k, p, q) in even theories).

Consider the equation

for S(~, ; x)~ C(X) = (2~) ~(- X2 + mo) 1.
Since the one particle irreducible two point function /~(/L; X) is of order 0(~,)
and analytic for Re X I  2m o - ~(~.) (see Corollary 23) we observe the
well known fact that S(/L; X) has a pole i. e.

for some value m~~,) of X near mo.
An other pole which is relevant for the mass spectrum below 2~(A) is

that of

The first term can be studied by looking at the operator equation (see (4))

Since the Bethe-Salpeter kernel K(/L; q) is of order 0(~,) (see Corollary 23)
and since Ro(,; )() has (in two space-time dimensions) a kinematical singu-
larity R o ~(4~(/~) - x 2 ) -1 ~ 2 we conclude by ( 10) that R(A; X) can have
a pole at X = x 1 (~) near (and below) 2m(~,) where

for some function f In an even theory this leads to a bound state with
mass xl(~,) (see also [DE]).

Before considering R22 in the odd case let us first return to (7) and look
at the other possibility for S(/L; X) to have a pole below 2~(A), namely
when (8) holds because k(~,; X) has a pole. Since

with the two particle irreducible three point function L defined in (3) which
is ~(A) and regular (see Corollary 23) we see that in an even theory where
three point functions vanish A~; X) is also regular. Regular here means

Vol. XXXI, nO 3 - 1979.



178 H. KOCH

analytic in I  3mo - ~(~)- In this case X) has no additional
pole below 2~(~).

But in an odd theory the situation is different. L does not vanish and thus
by ( 11 ) ~(A; X) can have a pole at X = x 1 (~) induced by R(~; /). Then (8)
may hold for some value x2(~,) of X near xl(~,) (and below 2m(~,)) leading
to a pole in S(~; X) i. e. a two particle bound state with mass x2(~,).
Note that in this case S(~; X) has a C. D. D. zero at X = xl(~). Thus

for odd theories both terms on the right hand side of (9) may have a pole
at X = xl(~). But by using the fact that the singularity of R(~; X) at 
is contained in a rank one operator it can be shown (see the proof of Pro-
position 32) that the poles of X) and R21(À; x)S(~; z)’~R2i(~; x)*
always cancel. Consequently R22(À; X) is analytic at xl(~,) (but has a pole
at x 2 (~,)) if 0.
A large part of this paper is devoted to the proof of analyticity properties

of kernels like ~(~; x), L(~; x), K(~; x), etc. The method which we use is due
to Spencer [S II]. We shall illustrate it for the case of the n-particle irre-
ducible expectations ( Q1; Q2 )~"~~ which play an essential role in the
many-particle structure analysis initiated by Symanzik [SY] ; see also [B],

We define ( Q1(X); Q2(Y) ~ ~n first formally as the sum of all graphs
of ( with at least n lines hitting each line l c 1R2 separating X
from Y. An example for such a graph is

Since = the should

decay as or equivalently their Fourier-Laplace transform

should for real kl be analytic in Im k° I  E). To prove this by
starting with another definition of ( Q2 )~" (see Section II) we show
first that it is in some sense equivalent to the first one. This can be done
as follows. Let d~ denote the Laplacian with zero boundary conditions on
a (straight) line l c [R2. We define C ~ = ( - ð + mo) -1,

and ( ... ) t as the expectation with respect to the Gaussian measure
with covariance x, y). Notice that y) - 0 if l separates x

from y. Consequently

Annales de l’Institut Henri Poincaré - Section A



179IRREDUCIBLE KERNELS AND BOUND STATES

if l separates { In fact it suffices to show that

independent of the line l (parallel to 0) in order to obtain an exponen-
tial decay |yoi-xoj| I and the desired analyticity in p-space.
Such t-derivatives are computed in Section III for the different kernels

defined in Section II. The resulting analiticity properties (see Sections IV, VI)
are related to the mass spectrum as will be outlined in Section VII. Problems

concerning the existence of bound states, their masses, etc., are treated

in Section VIII by using C°° properties in ~, established in V. The last sec-
tion is devoted to the application of these results to a theory with
strong external field.

Remark. - Recently Glimm and Jaffe [GJ II] also proved that the
mass spectrum in weakly coupled ~(p)2 below the 2m threshold is iso-

lated. They use physical one particle substractions combined with an expan-
sion as in [GJS I].

I. SOME DEFINITIONS AND PRELIMINARY LEMMAS

In this section we introduce classes of bounded linear maps such

that each kernel introduced later defines an element in some ~p;q. Sums,
products, tensor products and some inverses will be defined.

But first we illustrate how the decay property of a kernel Kt constructed
with t-expectations ( ... B t is obtained by using the fact that certain of
its t-derivatives vanish at t = 0. To do this we need simultaneous deriva-
tives at different lines

for i E I and to be specified later (depending on Kr, see Section IV).
Let oc:I2014~{0,l,...,r} and t : I ~ [0, 1] be two functions on I, sometimes
written as a = { x(~) = }ter Then and ~ ... B are

defined with respect to the new covariance

where = C,u~. Suppose that we have shown

for every function a  /3 (i. e.  ~(i)  r I). Then

Vol. XXXI, nO 3 - 1979.
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The ti-derivatives are computed by using [DG]:

with

For multiple derivatives the Leibnitz rule leads to

Next we can use that y) = 0 (e -’~~c 1-a&#x3E;d~°‘~) with

such that y) could be replaced by

This is the idea for defining the following modified expectations [8 II]

for each partition 03C0 = (eXl’ ..., of 03B2.
y) = and xsJ is the characteristic function

of the unit square + 1] ] x + 1] for 7= (/,7’)eZ~
With this definition

and an analogous formula is valid for kernels = ¿ 03A0Qij~t,k.
Combined with (1.2) this leads to the basic expansion 

i j

which is true under the condition that

Annales de l’Institut Henri Poincaré - Section A



181IRREDUCIBLE KERNELS AND BOUND STATES

and that Kt h is analytic in

I

It is the factor which will finally give the desired exponential

decay . But we need also uniform bounds on kernels Kt,h for and
hE R.
The main input in this direction is the Theorem 3 in [S II] with a slight

generalization which is also contained in the proof given there.

LEMMA 1. - For given &#x3E; 0 and 1  p  oo there are positive
constants c , c2, ~3 such that for

i= 1 I

with support in a product o, f ’ unit squares the integral

is bounded by c3 exp [- 03A3dist (Gi, Gj)]. .11 w  oo uniformly in

t  ,j
I C 7l" 03B2  r, 03C0 E P(03B2) hER and is analytic in h for hER

For the « covariance " » C(t, h, x, j;) = ( ~(jc); " need  an addi-
tional property, namely

LEMMA 2. 2014 For mo sufficiently large (depending o on ~)

~f 1 ~ p  00 and hER.

Proof - Two standard estimates (see [GIS], [S], ...) based o on the Wiener
path representation can in our case be written as

where L(oe) = { ~ : = 1 }, and 5 &#x3E; 0 can be chosen arbitrarity small.
Let j) = min { ! ! x(x) = 1 }. Then

Vol. XXXI, n" 3 - 1979.
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by (I.5). By combining this with (I.5), (1.6) we can bound derivatives
of y) as follows:

Next we will use this estimate to bound h, x, y) which is by definition
equal to

Note that the number of functions in

= {et : et ~ Xh = J and = /? }
is bounded by 2d+1. Thus for h~R.

By choosing 5 = 8/4 this sum is for sufficiently large mo controlled by the
factor e ~ m°~ 1- 2a~(d+ p) from (I . 7) and we obtain

The assertion follows now immediately for mo &#x3E; 4~ ~. 0

By their local Lp - and exponential decay properties some of the functions
described in Lemma 1 and Lemma 2 represent kernels of bounded linear

maps between Banach spaces whose definition will be prepared now.

DEFINITION 1. 2014 ~) Let denote the subspace containing
symmetric functions .f’ for which

is finite and II ~ 0 I -+ ~. Here PAj denotes the projection
onto the functions with support in ð. j = 0394j1x ... Notice that

b) Let d(S) be the lenght of the shortest tree in R2 connecting every point

Annales de l’Institut Henri Section A



183IRREDUCIBLE KERNELS AND BOUND STATES

Example : S = {71~2.73}

shortest tree

Then for i E E we define

where ..., and ..., denote partitions of

..., im} and {j1, ..., respectively.
Among the bounded linear maps A : L,q -+ (for some p, q) we

are intersted in those having the following exponential decay property :
121 Th ere is a constant c = &#x3E; 0 such that

is finite where II . denotes the norm of a continuous map from L q
t0 L;, Lp - 

PROPOSITION 3. Let At, A2 : L~ ~ Lp and A3 : L~ ~ Lq be given
satisfying condition (I.12) for = c i. Then there are positive constants

kl, k2, k3 only depending on k, m, n, cl, c2, c3 such that

Proof. 2014 a) Is obvious.

b) Is proved as (I.19) below.

c) Let B denote the unit ball in Then

and obviously L~. D
The objects from which we construct our kernels are partially amputated

Schwinger functions defined as follows (we omit the index t, h).

Vol. XXXI, nO 3 - 1979.
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DEFINITION 2. - ..., YI2 ~, L={~+1, ..., ~+~}.Then

where the sum runs over the partitions n ..., m + n ~ and 
denotes the k-th derivative of the interaction polynomial ~. The correspond-
ing untruncated functions ..., ~ xm + 1, ..., and partially
truncated functions are constructed as usually (see also (111.5)) from the
above defined kernels ... ; xrn ; xm + 1; ...; 

The so defined (untruncated) functions do (for m &#x3E; 1) not
coincide with what is usually called amputated Schwinger functions, since

For a recursion formula m --~ m + 1 see (111.4).
If an integral as ... ; ~; ~ ; ...; should make

sense f must at least be restrictable to hyperplanes

defined by partitions n ..., of { 1, ... , n }. Spaces 
can be introduced as in Definition 1 and since dim Hn = 2 03A0 I we may
denote the norm in also by II . So Definition 2 motivates
the introduction of

To preserve the notation of functions we do this in the following two
equivalent ways :

DEFINITION 3. denote the completion of with
respect to the norm

where ccy = denote the Banach space of symmetric
functions

Annales de Henri Poincare - Section A



185IRREDUCIBLE KERNELS AND BOUND STATES

with fn E and the norm

A product on 2;*,:* x (~*, q’~ are the dual Holder indices q)
can be defined by

Before defining our main class of operators let us introduce variables 7, T,...
with values * or « no * » and let ~ q - J~~.

DEFINITION 4. 2014 Linear maps A : J~’ -~ 2;(1 are said to be in 
if their components Ant ,n2 : ~ defined by

satisfy the « tree decay )) condition (I.12).
To simplify the notations we omit injections which identify with

a subset of 

Furthermore let 03C6 ~  dyK(.;y)03C6(y) denote the map defined by the

kernel K(x ; j~).

PROPOSITION 4. 2014 For given 1  p  q  oo and sufficiently small /L

and (depending on p, ~~
n

a) The kernel n ! h, defines an Cn E ~p; i.
j=i

b) The kernel

= ...;~)

defines an element

Vol. XXXI, nO 3 - 1979.
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Proof - a) Cn(t, ~i..... up to permutations
of x and y equal to

Thus by the definition pl i

b) Let k, l &#x3E; 1. The decay property (1.12) follows from Lemma 1 so

that it suffices to have bounds of the form

for arbitrary A~, A~. We consider first the case k = m, l = n. By construc-
tion (Definition 2) the kernel of each component A03A01,03A02 must be a finite
sum of terms of the form

whose first factor which we denote ..., yk~ is by Lemma 1 in 
for 1  r  oo . Thus by choosing r*~ =jp*~ 2014 q-1 and applying the
Holder inequality, we get

and we can bound the left hand side of (1.14) by

The remaining cases follow by multiplying with C(t, h~k from the right or
C(t, h)z from the left using Proposition 3 b).
The preceding definitions allow to introduce the tensor product Ai (8) A2

for At, A2 E U j~~~. Notice that by the theorem of Dunford-Pettis [T],
if Ani A03C3,03C4p,1 then Ant an integral operator whose kernel A03A01 ,03A02(x; y)
satisfies

Section A
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We may thus define

DEFINITION 5.

PROPOSITION 5. A2 E ~q;1 then At (8) A2 E j~;~ where 1  p  co,

and q = ~ if ~ _ *, q = 2p otherwise.

For h = 1,2 let the components of Ak : ~1’"z ~ ~p’‘’~ have
the decay property (1.12). Then since

it suffices to show

From Definition 5 it follows that up to permutations of

where

and analogously for 03A021,y1, 03A022, y2. Notice that

for 03C3 = *:

Thus we obtain (1.16) by applying (1.15) and the Holder inequality if

o-~*. D

Let 1k denote the injection of Fk03C3q into Fk03C3p for q  p and let A E 
Then we define 1k ~ 1l = and 1k Q9 A formally as in Definition 5
with

Vol. XXXI, r1° 3 - 1979.
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PROPOSITION 6. 2014 ~) 0 A E j~*~ if A E s~ p;1 , 1  j.~  oo .

Proof - a) Since 1k~A03C3,03C3p,p the exponential decay of 1k p A is obvious
as in Proposition 5. There remains to show that

By looking at (I .17) the right hand side of (I .18) is (e. g. in the case of three
variables and k = 2) equal to

b) Let c, K1 be positive constants such that  K1 for all
partitions n, IT ..., ~}. To obtain a convergent Neumann series

00

(’0n + ~,A)-1 - 1), + (- ~,A)’" it suffices to bound 11~~2)
’ 

m=l

by Km for some K  oo. By using k)  + d(j, k) we get

This completes the proof. 0
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