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Ann. Inst. Henri Poincaré,
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Section A :

Physique theorique

ABSTRACT. 2014 Any Feynman amplitude is defined by an integral repre-
sentation of the Mellin-Barnes type. The integrand is a product of r-func-
tions, with linear arguments given by the topology of the graph, and depends
on the invariants and masses in a completely factorized form. The integra-
tion path is the set of the imaginary axes.
These properties allow an easy geometrical determination of any asympto-

tic behaviour, giving explicitly the corresponding asymptotic expansion.
Moreover in the formalism, the integrand is unaffected by the renormaliza-
tion which is expressed by simple translations of the integration path.

RESUME. 2014 Toute amplitude de Feynman est définie par une representa-
tion integrale du type Mellin-Barnes. L’integrand est un produit de fonctions
d’Euler r, avec des arguments lineaires donnes par la topologie du graphe;
les invariants et les masses sont completement factorises dans 1’integrand.
Le chemin d’integration est 1’ensemble des axes imaginaires.
Ces proprietes permettent une determination geometrique aisee de

n’importe quel comportement asymptotique, et donnent explicitement le

developpement correspondant. De plus, dans ce formalisme, 1’integrand
n’est pas modifie par la renormalisation, qui s’exprime par de simples trans-
lations du chemin d’integration.

(*) Present address : Centro Brasileiro de Pesquisas Fisicas C. B. P. F., av. Wensceslau
Braz 71, Rio de Janeiro (Brazil).
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92 C. DE CALAN AND A. P. C. MALBOUISSON

I. INTRODUCTION

In a previous paper [1], we have considered the asymptotic behaviour of
Feynman amplitudes under scaling of any subset of invariants or squared
masses. We generally proved the existence of an asymptotic expansion with
powers and powers of logarithms, of the scaling parameter. Examples of
physical applications, and references, are quoted in [7]. Let us briefly recall
the main features of the asymptotic behaviours of Feynman amplitudes.

For some peculiar asymptotic limits, arguments based on power counting
are sufficient to determine the expansion. A useful technique is the Mellin
transformation respective to the scaling parameter : the Mellin transform is
easily desingularized if its integrand has what we called the « FINE )) pro-
perty. But in many other asymptotic regimes (scaling of a partial set of
momenta, on-mass-shell infrared problem, etc.), this happens to be wrong,
and power counting may lead to erroneous results. In the Schwinger para-
metric representation, « FINE )) integrands are desingularized in each Hepp
sector by the usual a -~ f3 change of variables. If the FINE property fails to
be true, one must find another adequate change of variables. But an alter-
native is to restore FINE integrands by introducing a « Multiple Mellin »
representation, as we did in [1].

In this paper, we take the extreme point of view to use only the Multiple
Mellin technique, by splitting all the polynomials of the integrand into
their monomials. Then no change of variables is needed : not only the oc

variables provide a trivial desingularization, but the oc integrations can be
explicitly performed, and we are left with the pure geometrical study of
convex polyhedrons in the Mellin variables. We prove the same results as
in [1] in a simpler way, and asymptotic expansions are computed in a much
more compact form, without any division of the integral into the /! Hepp
sectors. Furthermore, in contrast with ref. [1], renormalization of ultra-
violet divergencies may be realized in a very simple way. On the other hand,
we think that the representation we obtain could be very suited to the study
of other problems, such as the determination of Landau singularities, or
the dimensional renormalization.

For the sake of simplicity, we restrict ourselves to spinless particles. In
section II, the CM representation is proved for any convergent amplitude,
resulting in a simple integral of a product of r-functions with linear argu-
ments, times factorized powers of the invariants. This form is used in sec-
tion III to the determination of the expansion corresponding to an arbitrary
asymptotic regime.

Finally we study in section IV the ultraviolet divergent amplitudes. It
is shown how renormalization may be performed by simple translations of
the integration path. The detailed organisation of the renormalization pro-
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93ASYMPTOTIC BEHAVIOURS OF FEYNMAN AMPLITUDES

gramm, in the CM representation, will be explained in a later paper : the
aim here is mainly to show that the CM representation is preserved, and so
the method for the determination of asymptotic expansions.

II. COMPLETE MELLIN REPRESENTATION
FOR CONVERGENT GRAPHS

In this work, we shall treat simultaneously the case of euclidean and
minkowskian metrics by performing a Wick rotation on the four-momenta,
in the form :

and by using complex internal masses :

Thus the propagator, written as 2(E) ~- 1 m2(E) , with the euclidean

metrics (++++) equals

which is 1 for e === - and behaves like 2014~20142014201420142014201420142014~201420142014
2 

in the limit s-~ 0+.
The real part of the invariants p2(~), m2(E) is positive for 0  E  7r. We

omit in the following the s dependence and therefore use the euclidean
notation. The distributions in the minkowskian case are recovered in the
limit e-~0+.

Given a convergent Feynman graph with lines, non vanishing internal
masses m~, L independent loops, the corresponding amplitude is written in
the Schwinger representation :

where D is the space-time dimension (we come back to the case of some
vanishing masses at the end of section III).

Vol. XXXII, nO 1 - 1980.



94 C. DE CALAN AND A. P. C. MALBOUISSON

j is an index for the distinct « one-trees ~&#x3E; (connected subgraphs, without
loop, linking all vertices of the graph).

= 0 if the line i belongs to the one-tree j
1 otherwise

for every j

k is an index for the distinct « two-trees » (subgraphs without loop, with
two connected components, linking all vertices of the graph).

= 0 if the line i belongs to the two-tree k
1 otherwise

sk is the invariant built by squaring the sum of the external momenta over
one connected component of the two-tree (any one of then equivalently,
by momentum conservation). For different k’s, the corresponding inva-
riants sk may actually coincide.

For obtaining what we call the complete Mellin (CM) representation of
the amplitude, we first write an integral Mellin representation of each term
N 

.

in e U :

which is true for

Annales de H enti Poincaré - Section A
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with

Thus we get :

where

Finally we may interchange the Im x, and a integrations by absolute
convergence of

Indeed, the second integral is convergent by :

provided sk = |sk|ei03B8k with |03B8k|  03C0 2, which is true for non vanishing
Wick’s angle E.
The iirst integral is convergent when Re 03C6i &#x3E; 0. This condition may be

realized for every i simultaneously, due to theorem 1.

THEOREM 1. 2014 The following two propositions are equivalent :

2) Convex domain

- 

’ 

~ ft /

is not empty.

Vol. XXXII, n~ I -1980. 



96 C. DE CALAN AND A. P. C. MALBOUISSON

Proposition 1) expresses the absence of any ultraviolet divergency. It
is implied by proposition 2) as directly proved by representation (4). The
converse implication is proved in the appendix.
By theorem 1, we can perform first the a integrations :

and we obtain the CM representation of the Feynman amplitude:

where we recall the notations :

is 0 or 1 following the line i belongs or not to the one-tree j (two-
tree k).

d . h... d Im x~ Im yk . 

h Rand Integrate over the remamng mdependent 2i03C0, -2’ , with Re xj.
Re yk satisfying:

As discussed in section V of ref. [1], the minskowskian limit a -~ 0 cannot
generally be taken directly in the integrand of (6), unless the relative phases
of the complex numbers ~, m2, are bounded by  1t, uniformly in s.
This is the case for example if the minkowskian imaginary parts of the inva-
riants keep the same common sign. Otherwise we think that integrations by
parts, or displacements of the integration path, may isolate the threshold2014or,
Landau-singularities and restore convergent integrals in the limit e -+ 0
as we shall discuss elsewhere.

III. ASYMPTOTIC BEHAVIOURS

The CM representation is particularly suited to the determination of an
asymptotic expansion. A general asymptotic regime is defined by scaling

Annales de l’Institut Henri Poincaré - Section A
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the invariants sk and squared masses m2 by arbitrary powers of a real para-
meter~:

positive, negative or null), and by letting ~, go to infinite.
Since the invariants and masses are completely factorized in the integrand

of the CM representation, we get the simple following form :

where

Now the argument closely parallels that one in section IV of ref. [1] and
leads to an asymptotic expansion :

The main progress here, as compared to ref. [1], is that the coefficients Fpq
will be given in a much simpler way, without any previous splitting of the
Feynman integral into Hepp sectors.

We use the constraint + 3’k - - D 2 for eliminating any one of
7 k

the integration variables. Let us relabel the remaining variables x~, yk as
zm(Re zm = the linear functions - yk) as and

the invariants as sy(s,, = 1, sk or ~M? for v replacing j, k, i respectively).
Then å is the convex domain {03BE|03C8v(03B6) &#x3E; 0 Vv }. A first bound on F(03BB) is
thus given by

where ~ is an arbitrarily small positive number

From the definition the function being positive in ð.
and reaching 0 on its bound, must belong to the convex space generated by
the ~"’s : there exist (generally non unique) non negative coefficients d,,
such that

Vol. XXXII, nO 1 - 1980.
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Therefore

For a given v, if the subset { 03C803BD’, 03BD’ ~ v } again generates t/1o - pmax with
non negative coefficients d~, we repeat the procedure, which is iterated
until we obtain :

Now for each E, 1/10 - pmax does not belong to the convex space generated
by the subset { ~y, v E E}. It becomes negative somewhere in

where 0yE === 0 if v e E, 1 otherwise.
Rv

we write :

is now analytical in AE and we may move the integration path up to a point
where 1/10 - 0 without crossing any other polar variety. This procedure
is briefly sketched in the example of figure 1. By Cauchy theorem:

where V is the differential operator along any direction crossing the plane

Annales de l’Institut Henri Poincaré - Section A
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aE is a strictly positive rational. 
.,t,

Therefore we have completely determined the 03BBpmax part of the asymptotic
expansion. By

we can again determine the part, etc. We obtain similarly the com-
plete asymptotic expansion.

An equivalent way of determining this expansion is the following : starting
from formula (8) one can move step by step the integration path from
Vol. XXXII, nol-]980.
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up to points where 1/10  aE~ etc., by crossing the various
= 0, - 1, ... polar varieties. We obtain integral with new domains,

and integrals over the residues of these poles (generally multiple poles, since
many such varieties may coincide). For both types of integrals the same
procedure is then iterated, until one obtains integrals where 1/10 == ct, and
integrals with domains where becomes less than some p, determining the
asymptotic expansion up to ~,p terms.

REMARK ON THE CASE OF VANISHING MASSES

If the Feynman integral ( 1 ) still converges for some vanishing mass, say
ml, the corresponding expansion in /L, where ~,-1 scales ml, must be of the
type :

without any power of n ~, in the first term. Therefore ~0=~1 must be a
simple polar variety and the value of the Feynman integral is given by the
following CM representation :

The same argument can of course be repeated for any larger set of vanishing
masses, for which the Feynman integral remains convergent.

IV. COMPLETE MELLIN REPRESENTATION
FOR ULTRAVIOLET DIVERGENT GRAPHS

When ultraviolet divergences are present in a Feynman amplitude, the
a integration in (4) cannot be performed. The integrand

has first to be replaced by a renormalized integrand. One possible way of
working is the use of analytic continuations. For example the generalized
Feynnam amplitudes defined by Speer [2] correspond in our CM represen-
tation to the simple replacement ~ ~ ~ = ~ + ~’ Then the new domain

Annales de l’Institut Henri Poincaré - Section A



101ASYMPTOTIC BEHAVIOURS OF FEYNMAN AMPLITUDES

is non empty for Re ~,i’s high enough. The problem, then, is to define what
Speer call « evaluators » and we think that an explicit study of such evalua-
tors would be particularly simple in our representation.
An alternative would be the analytic continuation in the complex variable

D [3). Here too, ð is trivially a non empty domain for Re D small enough
and it would be also interesting to study with our formalism the dimensional
renormalization.

In the following we shall use the R operation built from Taylor sub-
tractions in the a space M.

IV.I. Renormalization of individual divergent subgraphs.

Let us first renormalize one divergent subgraph S (ls lines, Ls independent

loops). Ultraviolet divergency of S is expressed by = l s - - Ls  0.
Then the domain A is trivially empty since

find :

which cannot have a strictly positive real part for Re jc,  0, Re yk  0,
0.

Now the effect of 1 - acting on I given by (19), is to suppress the
8( - first terms of its generalized Taylor expansion in p, where p scales
the parameters E S. This is a problem quite similar to this one we
studied in section III: we must find the asymptotic expansion of I(p) when
p ~ 0. But at this stage, the only present singularities are those of the
functions r(-~), I~’( - yk). Since they are independent, we find only
Vol. XXXII, no 1 - 1980.
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simple poles and no power of In p, as expected since I has a Taylor expan-
sion :

We determine this expansion in the way indicated at the end of section III.
Let us call Es the set of indices m(zrn or yk) for which aSm(aSm = as;
or bsk) is strictly positive :

If this set is empty

(this can happen only if S is the complete graph G, which is then super-

ficially divergent, and if all external four momenta vanish : N = 0).
Otherwise we displace the integration path by crossing the singularities

of r( - ~i 1 E Es, until we reach the cell n 1  Re + 1 where

Re Øs becomes positive. For each integral over the residue at we

do the same by increasing Re m2 E Es, and we can finally rewrite

We similarly increase Re zm3 for the integrals over the double residues at

zm1 = n and zm2 = n’, etc.
Let us consider the whole set of cells Cs we reach in this way :

At the end of the procedure, the total residues at zm = 0, 1, ..., nm give
the terms in the expansion which are cancelled by the 1 - operation,
and we are left with

where the multiplicities are integers (positive, negative or null).

Annales de l’Institut Henri Poincaré - Section A
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IV.2. Complete renormalization.

It is not trivial that the same technique can be iterated for other divergent

subgraphs. Indeed, due to the constraint 03A3xj + 03A3yk = -D 2, some quantities
may decrease when other increase. The relevant cells we must reach

are those ones which are « tangent » to the convex space { ~ &#x3E; 0 V~ }:

where the cells C are such that

The following theorem, proved in the appendix, prevents the relevant
convex space from being empty.

THEOREM 2. 2014 Given the integrand I of an arbitrary Feynman graph, and
the corresponding linear functions then :

i) either ~1=0 (for some exceptional momenta);

Provide we could generalize the procedure of the preceding paragraph, we
would obtain :

expressing the renormalized amplitude by a simple translation of the inte-
gration path, without any change of the integrand.

Vol. XXXII, n° 1 - 1980.
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IV.3. Examples.

For the graph of figure 2, in 4 space-time dimensions, we find

with

Similarly for the graph of figure 3, though it is quadratically divergent and
contains overlapping logarithmically divergent subgraphs, we get the

simple result :

As a further example, for the graph of figure 4, we get :

where

Annales de Henri Poincaré - Section A
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and the same for the other domains, except that in A~:

and in A~:

IV.4. Comments.

We must be able to find the renormalized amplitudes as sums of terms,
each of which is a finite quantity having a CM representation. Actually
any integral like

is convergent, if in 03B4 the real parts of the arguments of the r-functions are
bounded between two consecutive integers. But of course this is not suffi-
cient for providing an acceptable renormalization. What happens is that
well choosen sums of such integrals differ from the unrenormalized one
by a quantity implementable with a finite number of prescribed counter-
terms (if the theory is renormalizable). From this point of view, we shall
explore more extensively, and more explicitly, the effect of renormalization,
with our CM Representation, in a later paper.
Now for determining any asymptotic expansion, the same method

applies as well to any such integral. But looking at the translated domains,
we see how deeply renormalization may change the asymptotic behaviour.

ACKNOWLEDGMENTS

We thank for interest and helpful comments the members of the Centre
de Physique Theorique at Ecole Poly technique, and M. Bergere, from DPhT
Saclay.

Vol. XXXII, n° 1 - 1980.



106 C. DE CALAN AND A. P. C. MALBOUISSON

APPENDIX

1. PROOF OF THEOREM 1

For achieving the proof, let us assume that 2) is wrong. Since each Re ~~ may be positive

a ~ , ! small enough) if we forget the condition EQ .+ Ezk = 2014 2014, it means
that the linear ( diagonal)) variety + Ezk + -~ == 0 does not across the domain

Thus this linear variety, or a « higher » diagonal

must belong to the convex space generated by the bounds of the domain there must
exist non negative rk such that

or :

Moreover Inf r, ~ Infy since - never becomes innnite. Now if we define (X. == yt the
~ ~ ~

radial power-counting in F(~, m2) with the y variables, gives

It implies that the integral is divergent, that is 1) is wrong. This achieves the proof of the
theorem, which is quite analogous to the theorem of appendix A in [1].

2. PROOF OF THEOREM 2

There exist points where all Re are positive if we forget the constraint S~ + S~

= 2014 - . Thus, if ii) is wrong, the « diagonal » 03A303C3j + + D 2 - r0, r0  0, must
Annales de l’Institut Henri Poincaré - Section A
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belong to the convex space generated by ;the ~’s : there must exist non negative 
such that

But then the naive power-counting in the y variables, with y~ = (Xi’ gives for the renor-
malized integral

since 911 is nothing but I multiplied by a sum of products of terms like -~, Unless

RI = 0, this would lead to a divergent integral, in contradiction with the result of Ber-
gcre and Lam [4].
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