Main field and convex covariant density for quasi-linear hyperbolic systems : relativistic fluid dynamics
Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Volume 34 (1981) no. 1, pp. 65-84.
@article{AIHPA_1981__34_1_65_0,
     author = {Ruggeri, Tommaso and Strumia, Alberto},
     title = {Main field and convex covariant density for quasi-linear hyperbolic systems : relativistic fluid dynamics},
     journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
     pages = {65--84},
     publisher = {Gauthier-Villars},
     volume = {34},
     number = {1},
     year = {1981},
     mrnumber = {605357},
     zbl = {0473.76126},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1981__34_1_65_0/}
}
TY  - JOUR
AU  - Ruggeri, Tommaso
AU  - Strumia, Alberto
TI  - Main field and convex covariant density for quasi-linear hyperbolic systems : relativistic fluid dynamics
JO  - Annales de l'institut Henri Poincaré. Section A, Physique Théorique
PY  - 1981
SP  - 65
EP  - 84
VL  - 34
IS  - 1
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1981__34_1_65_0/
LA  - en
ID  - AIHPA_1981__34_1_65_0
ER  - 
%0 Journal Article
%A Ruggeri, Tommaso
%A Strumia, Alberto
%T Main field and convex covariant density for quasi-linear hyperbolic systems : relativistic fluid dynamics
%J Annales de l'institut Henri Poincaré. Section A, Physique Théorique
%D 1981
%P 65-84
%V 34
%N 1
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1981__34_1_65_0/
%G en
%F AIHPA_1981__34_1_65_0
Ruggeri, Tommaso; Strumia, Alberto. Main field and convex covariant density for quasi-linear hyperbolic systems : relativistic fluid dynamics. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Volume 34 (1981) no. 1, pp. 65-84. http://archive.numdam.org/item/AIHPA_1981__34_1_65_0/

[1] K.O. Friedrichs, On the laws of relativistic electro-magneto-fluid dynamics. Comm. Pure Appl. Math., 1974, t. 27, p. 749-808; Conservation equations and the laws of motion in classical physics. Comm. Pure Appl. Math., t. 31, 1978, p. 123-131. | MR | Zbl

[2] A. Fisher and D.P. Marsden, The Einstein evolution equations as a first order quasilinear symmetric hyperbolic system I. Comm. Math. Phys., t. 28, 1972, p. 1-38. General relativity, partial differential equations and dynamical systems. Proc. Symp. Pure Math., t. 23, Ed. by C. Spencer; Amer. Math. Soc., 1973. | MR

[3] K.O. Friedrichs and P.D. Lax, Systems of conservation equations with a convex extension. Proc. Nat. Acad. Sci. U. S. A., t. 68, 1971, p. 1686-1688. | MR | Zbl

[4] P.D. Lax, Shock waves and entropy in: Contributions to non linear functional analysis (ed. E. H. Zarantonello), New York; Academic Press, 1971, p. 603-634. | MR | Zbl

[5] G. Boillat, Sur une fonction croissante comme l'entropie et génératrice des chocs dans les systèmes hyperboliques. C. R. Acad. Sci., Paris, t. 283 A, 1976, p. 409-412. | MR | Zbl

[6] G. Boillat and T. Ruggeri, Limite de la vitesse des chocs dans les champs à densité d'énergie convex. C. R. Acad. Sci., t. 289 A, 1979, p. 257-258. | MR | Zbl

[7] M. Berger and M. Berger, Perspectives in nonlinearity. W. A. Benjamin, Inc. New York, 1968, p. 137. | Zbl

[8] S.K. Godunov, An interesting class of quasilinear systems. Sov. Math., t. 2, 1961, p. 947-948. | MR | Zbl

[9] G. Boillat, Sur l'existence et la recherche d'équations de conservation supplémentaires pour les systèmes hyperboliques. C. R. Acad. Sci., Paris, t. 278 A, 1974, p. 909-912. | MR | Zbl

[10] G. Boillat and T. Ruggeri, Symmetric form of nonlinear mechanics equations and entropy growth across a shock. Acta Mechanica, t. 35, 1980, p. 271-274. | Zbl

[11] D. Fusco, Alcune considerazioni sulle onde d'urto in fluidodinamica. Rend. Sem. Mat. di Modena, t. 28, 1979, 223-233. | Zbl

[12] I.-Shih Liu, Method of Lagrange Multipliers for exploitation of the entropy principle. Arch. Rat. Mech. Anal., t. 46, 1972, p. 131-148. | MR | Zbl

[13] I. Müller, The coldness, a universal function in thermoelastic bodies, Arch. Rat. Mech. Anal., t. 41, 1971, p. 319-332. Entropy in non-equilibrium-a challenge to mathematicians. Trend in Application of Pure Mathematics to Mechanics, Vol. II, Ed. H. Zorski, Pitman London, 1979, p. 281-295. | MR | Zbl

[14] S.N. Kruskov, Results on the character of continuity of solutions of parabolic equations and some their applications. Math. Zametky, t. 6, 1969; p. 97-108.

[15] E. Hopf, On the right weak solution of the Cauchy problem for quasilinear equation of first order. J. of Math. and Mech., t. 19, 1969, p. 487-493. | MR | Zbl

[16] A. Lichnerowicz, Ondes des choc, ondes infinitésimales et rayons en hydrodynamique et magnétohydrodynamique relativistes, in: Relativistic fluid dynamics, Corso CIME 1970, 87-203 Ed. Cremonese, 1971. Shock waves in relativistic magnetohydrodynamics under general assumptions. Journal of Math. Phys., t. 17, 1976, p. 2135-2142. Relativistic Hydrodynamics and Magnetohydrodynamics, W. A. Benjamin, New York, 1967. | MR

[17] L. Landau and E. Lifchtiz, Mécanique des fluides, ed. MIR, Moscou, 1971, p. 625. | Zbl

[18] D. Ter Haar and H. Wergeland, Elements of thermodynamics. Addison Wesley Publ. Co., Reading, Mass., 1966.