The n-field-irreducible part of a n-point functional
Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Volume 34 (1981) no. 3, pp. 309-328.
@article{AIHPA_1981__34_3_309_0,
     author = {Br\"uning, Erwin},
     title = {The $n$-field-irreducible part of a $n$-point functional},
     journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
     pages = {309--328},
     publisher = {Gauthier-Villars},
     volume = {34},
     number = {3},
     year = {1981},
     mrnumber = {612220},
     zbl = {0476.46059},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1981__34_3_309_0/}
}
TY  - JOUR
AU  - Brüning, Erwin
TI  - The $n$-field-irreducible part of a $n$-point functional
JO  - Annales de l'institut Henri Poincaré. Section A, Physique Théorique
PY  - 1981
SP  - 309
EP  - 328
VL  - 34
IS  - 3
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1981__34_3_309_0/
LA  - en
ID  - AIHPA_1981__34_3_309_0
ER  - 
%0 Journal Article
%A Brüning, Erwin
%T The $n$-field-irreducible part of a $n$-point functional
%J Annales de l'institut Henri Poincaré. Section A, Physique Théorique
%D 1981
%P 309-328
%V 34
%N 3
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1981__34_3_309_0/
%G en
%F AIHPA_1981__34_3_309_0
Brüning, Erwin. The $n$-field-irreducible part of a $n$-point functional. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Volume 34 (1981) no. 3, pp. 309-328. http://archive.numdam.org/item/AIHPA_1981__34_3_309_0/

[1] R. Haag, Phys. Rev., t. 112, 1958, p. 669. | MR | Zbl

[2] R. Jost, The general theory of quantized fields. Providence, R. I. : American Mathematical Society, 1965. | MR | Zbl

[3] E. Brüning, On Jacobi-fields; BI-TP, june 1979, p. 25-79 ; to appear in the Proceedings of the Colloquim on Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory, june 1979, p. 24-30, Esztergom. | MR

[4] J. Bros, M. Lassalle, Analyticity properties and many-particle structure in general quantum field theory I, II, III ; Comm. math. Phys., t. 36, 1974, p. 185-225 ; t. 43, 1975, p. 279-309; t. 54, 1977, p. 33-62.

[5] K. Floret, J. Wloka, Einführung in die Theorie der lokalkonvexen Räume. Berlin, Heidelberg, New York, Springer, 1968. | MR | Zbl

[6] E. Brüning, On the Characterization of Relativistic Quantum Field Theories in Terms of Finitely Many Vacuum Expectation Values II ; Comm. math. Phys., t. 58, 1978, p. 167-194. | MR

[7] H. Epstein, V. Glaser, R. Stora, General Properties of the n-Point-Functionals in Local Quantum Field Theory; in: Structural Analysis of Collision Amplitudes, Les Houches, 1975, june Institute; Ed. : R. Balian, D. Iagolnitzer, North Holland, 1976. | MR

[8] J. Glimm, A. Jaffé, in International Symposium on Mathematical Problems in Thenetical Physics, Kyoto, Springer, Lecture Notes in Physics, t. 39, 1975. | MR