
ANNALES DE L’I. H. P., SECTION A

J.-P. ANTOINE

M. VAUSE
Partial inner product spaces of entire functions
Annales de l’I. H. P., section A, tome 35, no 3 (1981), p. 195-224
<http://www.numdam.org/item?id=AIHPA_1981__35_3_195_0>

© Gauthier-Villars, 1981, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1981__35_3_195_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


p. 195

Partial inner product spaces
of entire functions

J.-P. ANTOINE M. VAUSE

Institut de Physique Théorique,
Université Catholique de Louvain (*)

Ann. Inst. Henri Poincaré,

Vol. XXXV, n° 3, 1981,

Section A :

Physique théorique.

ABSTRACT. - We investigate various partial inner product space genera-
lizations of Bargmann’s Hilbert space of entire functions as used in the
coherent state representation of Quantum Mechanics. In particular, we
exhibit a hierarchy of nested Hilbert spaces, the smallest of them being
Bargmann’s original scale.

RESUME. - Nous étudions differents espaces à produit interne partiel
qui généralisent l’espace hilbertien de fonctions entières introduit par

Bargmann et utilise dans la representation « états cohérents » de la meca-
nique quantique. Nous obtenons, en particulier, une hiérarchie d’espaces
« nestés » (au sens de Grossmann), le plus petit d’entre eux étant l’échelle
originelle de Bargmann.

1. INTRODUCTION

A partial inner product (PIP) space is a vector space equipped with
a nondegenerate Hermitian form (’!’)&#x3E;, defined on particular pairs of
vectors, the so-called compatible vectors. A systematic study of such

objects may be found in a series of papers by A. Grossmann and one of
us [1 ] - [4 ] ; these papers will be quoted below as I-IV respectively. Here
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196 J.-P. ANTOINE AND M. VAUSE

we will restrict ourselves to the case where the form (’!-) is positive
definite, and we will assume, moreover, the existence of a central Hilbert
space. In most cases, the latter property follows in fact from positivity,
as shown in IV.

Such PIP-spaces are a natural generalization of Hilbert spaces. Of
course the latter are all unitarily equivalent (we consider only infinite
dimensional separable spaces), but their concrete realizations may vary
considerably. Three types are most often considered : the space l2 of
square integrable sequences, the space L2(X, ,u) of square integrable func-
tions over a measure space (X, ,u) and the Hilbert space §(Q) of func-
tions f : C - C, analytic in a domain Q c C and square integrable on Q
with respect to some measure. A well-known example is Bargmann’s
space g- of all entire functions square integrable for the Gaussian
measure [5 ] [6 ]. Now l~ leads to a natural PIP-space structure on the
space co of all complex sequences, and L2(X, ,u) leads to the PIP-space

,u) of all p-locally integrable functions on X. Both structures have
been discussed extensively in the papers I-IV. In this paper we study the
corresponding PIP-space generalization of Bargmann’s space ~.
The motivations for such an analysis are multiple. First, Bargmann’s

approach yields a very elegant description of tempered distributions,
representing Schwartz’s space [/’ as a continuous scale of Hilbert spaces
(there is also a Banach space realization), which is itself a very simple
example of PIP-space. This realization has been extended by Grossmann [7] ]
to cover some classes of nontempered distributions as well. Here we are
able to go much farther in that direction.
A second motivation lies in the existence of Bargmann’s integral trans-

form, which plays a fundamental role in the so-called Weyl quantization.
The latter establishes a correspondence between (classical) functions on
phase space and (quantum) operators on a Hilbert space. The main problem
is to identify the type of functions that are mapped on a given class of
operators, and vice versa. What is needed is a detailed parametrization of
such classes of functions or operators, and the concept of PIP-space is
ideally suited for that purpose. The beautiful results obtained recently
by Daubechies [8] - [10] ] and Daubechies and Grossmann [77] ] are an

eloquent proof of that statement.
A third area where a PIP-space analysis looks promising is the problem

of representations of complex canonical transformations, in the framework
of the phase space approach to Quantum Mechanics. Here again we refer
to recent work by Daubechies [8 ] - [10 ].
The paper is organized as follows. In Sections 2 and 3, we study the

space 3 of all entire functions. The result is that no global PIP-space
structure on 3 is fully satisfactory. Roughly speaking, the growth at infinity
of the functions must be somehow restricted if one is to get a nontrivial
and useful structure. This is best achieved by considering, instead of 3
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197PARTIAL INNER PRODUCT SPACES OF ENTIRE FUNCTIONS

itself, a lattice of Hilbert (assaying) subspaces of 3, i. e. building a nested
Hilbert space [72] ] in 3, centered around ~. Candidates for such subspaces
are analyzed in Section 4, namely weighted L2-spaces of entire functions.
Typically such a space, denoted ~(p), consists of all entire functions of

square integrable with respect to the measure exp [ - p(z) ]d,u(z),
where,u is the (normalized) Gaussian measure on C and p is a real-valued,
measurable function, bounded on every compact subset of C. Following
Grossmann [13 ], who introduced them first, we call such a function p a
(logarithmic) weight. The problem is to find adequate conditions on the
weights p such that the spaces have all the properties needed for
generating a nested Hilbert space. Once this information is obtained, we
proceed to build in Section 5 a hierarchy of four possible lattices ; the
smallest of these is Bargmann’s original scale, corresponding to tempered
distributions. Four appendices conclude the paper, including a discussion
of some pathological examples and an account of the solution to Stieltjes’
moment problem, which is used in the text.

2. SPACES OF ENTIRE FUNCTIONS

Our starting point is the space ~ of Bargmann [5 ] [6] ] (also variously
attributed to Fock, Segal or Fischer). Let 3 be the space of all entire (holo-
morphic) functions of one complex variable z E C. Denote by  the nor-
malized Gaussian measure on the complex plane (we always identify C = 1R2):

with z = x + iy and dz --_ dxd y. The space ð is then defined as the inter-
section 3 n L~(C, J1):

With the corresponding inner product :

~ is a Hilbert space, i. e. it is complete and, in fact, a closed subspace of
L~(C, ,u). An orthonormal basis in ~ is given by the functions :

Expanding two elements f, g e g- in that basis brings the inner product
into the equivalent form :

Vol. XXXV, n° 3-1981.
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where we have put :

Furthermore, ~ contains a total set consisting of the so-called principal
vectors defined by the relation :

They are simply the familiar coherent states :

In other words, F is a Hilbert space with reproducing kernel [14 ], namely :

Since our aim is to embed (as central Hilbert space) ð in a PIP-space,
we shall first have a closer look at the obvious candidate, namely the
space 3.
As is well-known [15 ]- [17] the space 3 --_ §(C) of all entire functions

is a nuclear Fréchet space (hence reflexive and Montel) for the topology
of uniform convergence on compact sets, i. e. for the norms :

Accordingly, the anti-dual 3 x, i. e. the space of all antilinear continuous
functionals on 3 (the so-called anti-analytic functionals), with its strong
dual topology, is a complete, nonmetrizable, nuclear (DF)-space, in parti-
cular it is also reflexive and Montel (see also the Appendix of IV for the
terminology).
We will need also the space Exp of all entire functions of exponential

type :

This space has a natural topology, strictly finer than that induced by 3,
as a union (inductive limit) of Fréchet spaces, for which it is a complete
space of type (DF). Thus one has :

Annales de l’lnstitut Henri Poincaré-Section A



199PARTIAL INNER PRODUCT SPACES OF ENTIRE FUNCTIONS

where each space is complete in its own topology, but dense in the next
one. Notice that { e~, is a total set of 3 contained in Exp. Conversely
every function of exponential type may be majorized by a finite linear
combination of elements ew.

It is a standard result that 3B with its strong topology, is isomorphic
to the space Exp with its natural topology. The isomorphism is given by
the Fourier-Borel (or Laplace) transform ~ (-~ ~ defined as :

where the r. h. s. is the value taken by J.1 E 3 on the element ew E J. Compar-
ing this relation with (2. 5), (2. 7), we see that the restriction of the Fourier-
Borel transform to F is simply the identity operator.

Since 3 is reflexive, we have also 3. Since both spaces Exp,
3 are nuclear and complete, and dual of each other, it follows that the

triplet (2. 8) is a Rigged Hilbert Space in the sense of Gel’fand and Vilen-
kin [18 ].

It is illuminating to translate these results in the language of sequences.
Indeed, by identification of an entire function with its Taylor coefficients,
we may realize 3 as a space of complex sequences :

Similarly for Exp rr 3":

Then the antiduality between Exp and 3 is given by the sesquilinear form

that is, precisely, the partial inner product which is inherited from the
space w of all sequences, and extends the inner product of ~, as given
in (2. 4).

3. COMPATIBILITIES ON SPACES

OF ENTIRE FUNCTIONS

Our aim is to embed Bargmann’s space ~, as central Hilbert space, in
a partial inner product space. A first step in this direction was made by
Vol. XXXV, n° 3-1981.



200 J.-P. ANTOINE AND M. VAUSE

Bargmann himself [6 ], with the scale of Hilbert spaces {~ 2014 oo  p  

This approach proves to be a convenient substitute for the standard

(Schwartz) formalism of the theory of distributions.
Since ~ is the intersection of L~(C, /l) and 3, it inherits two natural

notions of linear compatibility (see III). The first one, to be denoted by =#= 1,
is the usual compatibility on spaces of measurable functions :

The other comes from the identification, made above, of ~ and 3 as spaces
of sea uences :

with

As shown by Bargmann [6 ] the two compatibilities # 1 and #2 coincide
and yield the same (partial) inner product on ~ and, more generally, on

However, this is no longer true is general.

PROPOSITION 3.1. - The two linear compatibilities # 1 and * 2 are
not comparable on 3.

Proof - It is sufficient to consider exponential functions

One has indeed [5 ] :

If we choose yl = i, then 1 gl, but fi and gl are 2-compa-
tible. On the other hand, for y2 = 2, £52 = 1/4, /2 =~ 2 g2, but f2 and g2
are not #1-compatible. Hence # 1 and * 2 are not comparable on 3. D

Thus we have to study the two compatibilities separately. Let us begin
with # 1 as given by (3 .1). This is the restriction to 3 of the natural compati-
bility # on the space V = fl) of locally integrable functions

/(z, z) = y) on C == 1R2. In the corresponding PIP-space structure,
we have as usual V* = ,u), the essentially bounded functions of
compact support, and the central Hilbert space is L~(C, ,u) :

Annales de l’lnstitut Henri Poincaré-Section A
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Taking the intersection of each space with 3, we get :

Indeed every entire function is locally integrable, even locally bounded
(3 c c but it may have an arbitrary growth at infinity. Thus
any function f E compatible with every g E 3 must have compact
support : 3* = L;omp. Therefore we have :

PROPOSITION 3 . 2. - Let # be the natural compatibility on Ltoc(C, ~),
~ 1 its restriction to 3. Then 3*1 = 3# n 3 == {0 }. D .

Remark. It is easy to prove the proposition directly. One may, for
instance, show that f * 1 (exp az2) for all a E C implies f = 0.
~ is a closed subspace of L~(C, ju). As for every Hilbert space of analytic

functions [14 ], the corresponding projection operator is given by the
reproducing kernel; thus for any f E L2, its projection on ~ is :

(in other words, P extends the Fourier-Borel transform to L~(C, ,u).) Then
the relation 3* 1 = { 0 } means that P, although it is an orthogonal projec-
tion in L2, does not extend to a projection operator in the PIP-space

thus there is no way of obtaining a PIP-space structure on 3
by projecting the one on Lfoc.
A possible answer to this difficulty is to restrict the analysis from 3 to

the subspace ?) = (Exp) # 1. Of course one has :

This subspace # has many interesting properties. For instance :

i) Since Exp is generated by the principal vectors { (Sect. 2), it

follows that (Exp) # 1 = n { ea ‘ # " i. e. f iff it is ~ i-compatible
with every ea. aec 

.

ii) As a consequence, 9) is exactly the trace on 3 of the domain (in Ltoc)
of the operator P which projects L2 onto 9:9)= D(P) n 3.

iii) Correspondingly, ~ is the subspace of 3 on which the (inverse)
Fourier-Borel transform reduces to the identity, i. e. the set of functions f
which have the reproduction property: f(z) =  ez f ~ . This fact has been
noticed by Kree and R~czka (Ref. [16 ], Lemma 4 . 6) under the following
form : for any T E (Exp) " such that T E (Exp) # t, one has  T, h ~ _ ~ 
for every h E Exp.

iv) As suggested by Grossmann [19 ], # seems the natural space for
studying the representations of complex canonical transformations.

Unfortunately # = (Exp)#1 is still too large. Here again the compati-
Vol. XXXV, n° 3-1981.
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bilities # 1 and =»= 2 are not comparable ; indeed the argument of Propo-

sition 3.1 still applies, since all functions exp (1 2 z2 belong to 9) = (Exp) * 1
for I y  2. Thus there seems to be little hope of building a decent PIP-
space structure on ~.
We turn now to the compatibility * 2 inherited from m. As could be

guessed from the topological structure described in Sect. 2, 3 and Exp,
identified with the corresponding spaces of sequences, form an involutive
pair of assaying subsets under =»= 2.

PROPOSITION 3.3. - Let 3, resp. Exp, denote the spaces of all entire
functions, resp. of entire functions of exponential type, both considered
as spaces of sequences. Let ~ 2 be the natural compatibility on complex
sequences. Then one has :

Proof - Given g E 3, let g #2 f for every f - E 3, i. e.

Choose an arbitrary positive number K and write In = Knfm in = K -ngnn !.
00 op

By (2.10), ¿ Thus 1 ],.11 gn I  00, for every sequence

(J,,)E ll. It follows that (l’ ) # 2 = 1’ . Since this result holds for every
K &#x3E; 0, it follows by (2.11) that ge Exp. This proves that 3*’ c Exp.
The converse is obvious. The other assertion if proven in the same way. D

Remark. - Here again a direct proof, i. e. without recourse to the invo-
lutive pair (tl, is easy to give; like the one above, it amounts to an

application of the principle of uniform boundedness.
At this point we face a dilemma. On the one hand, the compatibility # 2

is the natural one on 3, making it a nondegenerate PIP-space, with the
structure inherited from ev. On the other hand, it is the compatibility # 1
that we have to extend from ~ to some larger space S c 3, if we want to
consider entire functions themselves, not their power expansions. The
way out is clear : we have to find a space S, strictly smaller than 3, on
which the two compatibilities # 1 and # 2 coincide. This goal is best

achieved by constructing directly a lattice of assaying subsets, i. e. an

indexed PIP-space in the sense of IV. In the next section, we will analyze
in detail a class of such assaying subsets, which are in fact Hilbert spaces.

Annales de l’Institut Henri Poincaré-Section A
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4. HILBERTIAN ASSAYING SUBSPACES
OF ENTIRE FUNCTIONS

As a guide for achieving the program just outlined, we return to the

PIP-space J1), as described in III. More precisely we consider the
rich subset of all weighted r measurable, r &#x3E; 0, rand

E (see also App. B). The weight r * 1 corresponds to the central
Hilbert space L2(C, J1) and the involution is [L2(r) ] # = L2(r-1) _ [L2(r) ] " .
By restriction from to 3 we get a family of spaces L2(r) n 3, out of
which we will build the nested Hilbert spaces we are looking for. Additional
conditions on the weight functions will be needed, since the restriction
LJoc - 3 is not a PIP-space projection.

Let p be a p-measurable (which is the same as Lebesgue measurable)
real-valued function on C ; we consider on 3 the following norm :

and the corresponding inner product :

Then we define g(/?) ( 1 ) as the vector space of all f E3 such that ) ) f IIp XJ,
i. e. S(p) = L2(eP) n 3. Notice that Bargmann’s space ~P is obtained for
the choice p(z) = log ( 1 + z ~ 12)-P (pe R) and g(0) = ~.
We require this space ~{p) to satisfy four conditions, all of them satisfied

for B(0) == ~ and every ~.

i ) ~(p) is a Hilbert space, i. e. it is complete. This is not automatic,
since lip-limit of a sequence of entire functions need not be analytic.

ii) The set i3 of all polynomials is dense in ~(p). If the weight function p
grows too fast at infinity, it might force ~(p) to be trivial, i. e. finite dimen-
sional or { 0}. On the other hand, the corresponding space S( 2014 p) might
be too large. Condition ii) will thus be a restriction on the growth of p ; it
has the further advantage that the set of monomials { um(z), m=0, 1, 2 ... }
given in Eq. (2. 3) will be a basis in ~(p). In case p is radial, i. e. p depends
only on this basis will be orthonormal and this will make the compati-
bility #2 easy to handle.

iii) ~{p) " is isomorphic to ~( - p). This is in fact the crucial condition,

e) This space is often denoted A 2( z P - p(z)) in the mathematical literature (see e. g.
Hantler [2~]). Its use in the present context was first suggested by Grossmann [13 ), who
called p a logarithmic weight.

Vol. XXXV, n° 3-1981.
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which again restricts the growth of p. For a radial weight p, condition iii)
will imply that * 1 and #2 coincide on 

Together with ii), this last condition implies of course that { generates
a dense subspace of g(p). From this follows that every operator A in the
resulting PIP-space is an integral operator with kernel A(z, w) = (~J 
We will now study the four conditions i)-iv) successively.

4 .1. Completeness of !F (p ).

PROPOSITION 4.1. - Let p : C - R be measurable and essentially
bounded on every compact set, i. e. p E ,u). Then g-(p) is complete
in the norm II . it is a Hilbert space.

Proof - Under the conditions stated, the proof of Bargmann (Ref. [6 ],
Sect. 3.2), which is the standard proof for Hilbert spaces of analytic func-
tions, applies literally. D

Notice that implies e*P E so that both ~(p) and ð( - p)
are complete, although they might not be dual of each other with respect
to the form ( ’ ~ ~, unless condition iii) is satisfied. In fact, the family
of all F(03C1), with p E is rich in 3, in the following sense (see III) : when-
ever f, g E 3 and f # 1 g, there exists a locally bounded weight p such
that f E (p) and g E ~( - p). This result follows from the proof given
in III, Sect. 4. B and the fact that 3 c 

4.2. Density of polynomials.

We consider first the weaker statement ~ c ~(p), which already gua-
rantees that Q’(~) is nontrivial.

If we define, in analogy with ref. [6 ] :

then that statement is conveniently rephrased as :

Given (4.4), the density of i3 in ~(p) is a classical problem for Hilbert
spaces of analytic functions (see Hantler [20 ] for instance) for which no
general solution is known. Only sufficient conditions exist, in the following
cases :

a) subharmonic weights :
subharmonic function (i. e. A~ ~ 0 everywhere in C

in a distribution sense) and p(z) ~ c(1 + ~ z 12)1/2 for some c &#x3E; 0.

Annales de l’Institut Henri Poincaré-Section A
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b) harmonic weights :
p = 2 log where either h is an exponential polynomial, i. e.

k

h(z) = ~ pk(z)eak2 (ak E C, pk polynomials) or h is an entire function of

k= 1

order less than two without zeros (such weights p are obviously harmonic).

c) radial weights : p(z) = p( z I).
In this case, which is the most interesting, Bargmann’s proof (Ref. [6],

Sect. 3.6) applies literally.
Remark. Cases b) and c) almost exclude each other, see Appendix A

for a proof.

If the weight p is radial, the space ~(p) possesses the following ortho-
normal basis :

= (y~~m ~) 1/2um(Z) ~ m = 0, 1, 2 ... (4 . 5)
where the coefficient defined in Eq. (4. 3) may also be expressed as :

tme-p(t)-tdt (4.6)

As a consequence, all the spaces ~(p), with p radial, may be simultaneously
realized as weighted 12 sequence spaces. One has indeed, for

Thus

4.3. Duality.

Given ~(p), what are the relations between ~( - p), 9(p)~ 9(~)*’ 1
and ~(p) # 2 ?

PROPOSITION 4.2. - Let p be bounded on every compact set. Then
one has :

Vol. XXXV, n° 3-1981.
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If p is radial, one has in addition :

Proof - The inclusion ~( - ~~p) " follows from the Schwarz

inequality :

The equality 9(2014 p) = 9(p)~ 1 follows from the corresponding relation
in Ltoc : L 2(e- P) = ] ~ ; indeed, since p is locally boun’ded, only the
behavior at infinity matters, i. e. S(/))* = [L2(e’°)]# = L 2(e-p) (compati-
bility in Ltoc) and therefore ~(p) # = ~( p) # n 3 = n 3 = ~( - p).
If p is radial, then ð(P) may be realized as I2(r~~N~), and therefore

Remark. - It is amusing to notice that the two relations (4.8), (4.9)
are the same as those proven for 3 in Propositions 3.2 and 3 .3 :

Eqs. (4. 8), (4.9) actually imply these, if one remembers that 3 = 
p

where p ranges over all locally bounded functions, and therefore

r

We emphasize that the inclusion in Eq. (4.8) may be strict. We will

give explicit examples below (for radial weights). Of course this pathology
does not arise in the space Ltoc : L 2(eP) is always the antidual of L2(e-P).
The standard proof is to notice that both spaces are unitarily equivalent

to L~, the mapping being multiplication by But this argument

fails for spaces of analytic functions, since p is real-valued.
One way to rescue it is to consider harmonic weights, p(z) = 2 Re h(z)

for some entire function h (any function harmonic in the whole plane is
of this form). Then indeed multiplication by exp ( ± h) maps ~ unitarily
onto ~(:t p). Let now L be an element of the antidual ~(p) " . By the Riesz
lemma, the action of L is given by a unique element g’ E 3-(p) :

By the unitary equivalence, there is a unique element g E 3’( - p) such
that g’(z) = Hence we have :

Annales de l’Institut Henri Poincaré-Section A
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and this expression cannot be of the form ( for some g E ~( 2014 p).
Hence, for a harmonic weight p, the antidual can never be identified

with g(- p).
For an arbitrary weight p it seems difficult to derive necessary and

sufficient conditions for the equality 9(- p) = S(p)B Things are different,
however, if p is radial.

PROPOSITION 4 . 3. - Let p be a radial weight. Then S(- p) = 
iff there exists a positive constant c(p) such that

Proof - The argument is straightforward, and entirely analogous to
Bargmann’s (Ref. [6 ], Sect. 3.12). For radial p, we have the identification

g(p) ~ [2(11(P»), and therefore ~( - p) ^-~ l2(~~ -’°&#x3E;)~ S(p)’ ~ l2(~tP~). Thus the
required equality holds iff l2(x~~-P~) = l2(r~{~~). As discussed in Appendix B,
this in turn is equivalent to the existence of positive constants d(p), c(p)
such that

Finally, we may set d(p) = 1, by the Schwarz inequality :

The usefulness of condition (4.10) is nicely illustrated by the following
families of weights :

In the first case, the behaviour of the corresponding coefficient has

been evaluated explicitly by Daubechies [8 ]. The result is that the

weights py, t satisfy the duality condition (4.10) for 0  y ~  1 2 but they
don’t for - 1  y  1. In the second case, one finds immediately, for I f3  1,

~)=(1+~)-~. Thus ~~=(1-~)’~ 1 which is unbounded as

n1 - 30, and therefore the weights p~ never satisfy the duality condition;
A more detailed discussion of these two classes of weights will be found
in Appendix C.

Starting from a space ~(p) of entire functions, one gets another one
g(- p) by the involution * 1. But it is not obvious that tj(p) x = tj(p)*2 

2

can be realized in the same way. In other words, given the corresponding
sequence ([ 1J~)J -1), is there a unique weight p such that = [1J~)J -1 ?
In view of Eq. (4.6), this is a Stieltjes moment problem [21 ] : the numbers

= m ! are the moments on [0, oo) of the function exp [ - p(t) - t ] .
Vol. XXXV, n° 3-1981. 9


