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Section A :

Physique théorique.

RESUME.2014 On étudie le probleme de Cauchy pour un champ de
Yang Mills et un champ scalaire classiques couples de façon minimale,
dans l’espace temps de dimension n + 1, en jauge de Lorentz. On demontre
l’existence et l’unicité de solutions dans des intervalles de temps petits
pour n quelconque, aussi bien dans des espaces locaux que globaux. En
dimension deux d’espace temps, les solutions precedentes peuvent etre
etendues a des temps quelconques par la methode des estimations a priori.
En dimension trois d’espace temps, nos estimations ne donnent que des
resultats partiels sur le probleme d’existence globale.

ABSTRACT. - We study the Cauchy problem for minimally coupled
classical Yang-Mills and scalar fields in n + 1 dimensional space-time
in the Lorentz gauge. We prove the existence and uniqueness of solutions
for small time intervals and for any n, both in local and global spaces.
In space time dimension two, the previous solutions can be extended to
all times by the method of a priori estimates. In space time dimension
three, our estimates yield only partial results on the global existence
problem.

(*) Laboratoire associe au Centre National de la Recherche Scientifique.
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60 J. GINIBRE AND G. VELO

1. INTRODUCTION

The initial value problem for classical coupled Yang-Mills and scalar
fields has been considered recently by several authors [2 ]- [8 ], [10 ]. In parti-
cular in a previous paper [6 ], to the introduction of which we refer for
more details, we have studied this problem in the so-called temporal
gauge. The main results of [6] ] include the existence and uniqueness of
solutions in small time intervals for arbitrary space-time dimension and
the existence and uniqueness of global solutions in space-time dimension
1 + 1 and 2 + 1. All these results hold both in global and local spaces.
In the latter case the initial data and the solutions are required to satisfy
only local regularity conditions in space, but no restriction on their
behaviour at infinity. Remarkably enough all these results can be proved
without using the elliptic constraint that generalizes Gauss’s law.

In this paper we take up the same problem in the Lorentz gauge 
In addition to its intrinsic interest, this gauge condition is imposed as a
consequence of the Lagrange equations if the Yang-Mills field is massive.
In this gauge the situation seems to be less favourable than in the temporal
gauge : we are still able to prove existence and uniqueness of solutions of
the Cauchy problem in small time intervals for arbitrary space-time dimen-
sion ; however we are able to prove existence and uniqueness of global
solutions only for space-time dimensions 1 + 1. Furthermore, even in

that case, the proof makes explicit use of the elliptic constraint mentioned
above. The additional problems posed by the Lorentz gauge as compared
with the temporal gauge can best be seen by considering pure Lorentz
gauges. If the gauge group is SU(2), the Lorentz condition becomes the

equation of motion for the O(4) non linear a-model. More generally, one
can study the Cauchy problem for the O(N) non linear a-model as well as
for the so-called CP(N) and GC(N, p) models. This will be done in a sub-
sequent paper. In all these models, in the same way as for the Yang-Mills
field in the Lorentz gauge, our proof of global existence works in dimen-
sion 1 + 1 and breaks down in higher dimensions.

In the same way as in the case of the temporal gauge treated in [6 ],
the finite propagation speed and the presence of an elliptic constraint,
which produces long range effects in the massless case, lead naturally to
study the problem in local spaces, where only local regularity conditions
are imposed on the initial data and the solutions.
The methods used here are similar to the ones used in [6 ]. The local

problem in global spaces is treated by the method of [9 ]. The local theory
in local spaces relies on Section 3 of [6 ]. The global existence problem
both in global and local spaces is treated by the standard method of a priori
estimates. The need to use the elliptic constraint complicates the proof:
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61THE CAUCHY PROBLEM FOR COUPLED YANG-MILLS AND SCALAR FIELDS

it requires a local version of these estimates and an iterative restriction
and extension procedure to construct the global solution.
The results of this paper have been announced in [5 ]. For technical

reasons they will be derived here in a slightly different formalism (see
Remark 2 .1 ).
The paper is organized as follows. In Section 2 we introduce the notation,

choose the dynamical variables, write the equations in suitable form, and
treat the local problem in global spaces for arbitrary space-time dimension.
In Section 3 we extend the previous treatment to the theory in local spaces.
In Section 4 we study the problem of global existence, both in global and
local spaces.

2. THE CAUCHY PROBLEM IN GLOBAL SPACES
FOR SMALL TIME INTERVALS

In this section we begin our study of the initial value problem for the
classical Yang-Mills field minimally coupled to a scalar field, in the Lorentz
gauge = 0. We first introduce some notation. The Yang-Mills potential
A,(t, x) is a function from n + 1 dimensional space-time to the Lie algebra ~
of a compact Lie group G. The corresponding field is

where [ , ] denotes the commutator in ~. We assume the existence
of a non degenerate positive definite bilinear form in ~ denoted by ( . , . ) ,
invariant under the adjoint representation of the group. The scalar field

x) belongs to a unitary representation of G in a finite dimensional
vector space ~ . We also denote by ( -, -) the invariant scalar product
in ff and we use the same notation for an element of ~ and for its represen-
tative in ~ . We shall write ( B, B )&#x3E; = ~ B 12. We use the same notation D~
for the covariant derivative in ~ where D~ + e [All’. ] and in ~ where
D~ = a~ + We use the metric gl1v with goo = 1, gii = - 1, gl1v = 0
for ~u ~ v.
The field equations are the variational equations associated with the

Lagrangian density

where V is a real CC1 function defined in (~ + with V(0) = 0. The equations
are
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62 J. GINIBRE AND G. VELO

and V’ is the derivative of V. We shall work in the first order formalism
and choose as dynamical variables the quantities Ao, A=={ A~, 1 

and ~={~,1~/~}
(~~, has to be thought of as Du~). The variational equations and the Lorentz
condition can be rewritten as the following system of equations of motion

supplemented by the constraints

Here Jo and J = {J j, 1  j  n ~ are supposed to be expressed in terms
of ~, and 1/1 j; R is the 1 x n matrix operator with entries R( = 2014 ~
and RA is the n x n(n - 1)/2 matrix operator with entries

The system of equations (2.4) and (2. 5) can be written more compactly as

where

Annales de l’Institut Henri Poincaré-Section A



63THE CAUCHY PROBLEM FOR COUPLED YANG-MILLS AND SCALAR FIELDS

and T~, and can be read directly from (2 . 4) and (2 . 5). The fields u~
and uq, take values in the finite dimensional vector spaces

respectively, so that u takes values in 1/ = 1/A EB The Cauchy problem
for the equation (2.9) can be transformed into the integral equation

where uo is the initial condition,

with cv = (RR*)1/2 = (- ~)1~2, = and is given by a
similar formula (see (2.13) of [6 ]).

REMARK 2.1. - In the Lorentz gauge there is a large flexibility in the
choice of the dynamical variables. For instance one could take the quan-
tities Ao, A = {A~ 1 # j # n ) , B == { B~ 1 ~’ ~ } (to be thought
of as B~ = DoA), 4&#x3E; and (to be thought of as = Do4», thereby
obtaining the equations

supplemented by the constraint (2.7). In (2.13), (2.14) and (2.7), F~," J~
and 03C8j --_ are supposed to be expressed in terms of the dynamical
variables. In the choice leading to (2.13), (2.14), as well as in the previous
choice leading to (2.4), (2.5), the Lorentz condition has been used as the

Vol. XXXVI, n° 1-1982. 3



64 J. GINIBRE AND G. VELO

equation of motion for Ao. Another, more standard choice, consists in
substituting the Lorentz condition also into the variational equation
Ko = 0, thereby converting it into an evolution equation for Ao. One
can then choose as dynamical variables A~ (0 ~ ~ ~ n), B~ (0 ~ ~ ~ n)
(to be thought of as BJ1 = and The equations of motion for All
and B~ become

while the equations for 03C6 and are still given by (2.14). These equations
must be supplemented by the constraints = 0 and Ko = 0 (at t = 0).
Up to a minor difference in the definition of B 11’ this last formalism is the
one used in [5 ]. It has the well-known drawback that the energy is bounded
from below only if the constraints are satisfied.
We now define the spaces in which we shall look for solutions of the

integral equation (2.11). For any integer k, we define the space ~k of
those u such that, componentwise, Fllv and t/1 Ji belong to the Sobolev space

while All and 03C6 belong to the Sobolev space Hk - 
More precisely, for any u 4&#x3E;, 03C8  } we define the norm ~ u II
in ~’‘ as follows:

Annales de l’Institut Henri Poincaré-Section A



65THE CAUCHY PROBLEM FOR COUPLED YANG-MILLS AND SCALAR FIELDS

Here a is a mutiindex of space derivatives denotes the norm

in Lq --_ When equipped with the norm (2.16), %k is a Hilbert
space which is a direct sum of usual Sobolev spaces. The norm (2.16) is
equivalent to the simpler looking norm

However the choice of (2.16) is better adapted to the free evolution U(t)
as will be seen in Lemma 2.1 below. For brevity we have not appended
an index to the norm ~ ~ ~ . . Furthermore, from now on we shall omit
the I I when appearing in an LP norm.

In order to prove the existence of solutions of (2 .11 ) we need the follow-
ing properties of U(t).

LEMMA 2.1. - For any integer k, U(t) is a (bounded) strongly continuous
one-parameter group in %k and, for any t E R, for any u E U(t) satisfies
the following estimate

where

Proof - The proof runs in the same way as that of Lemma 2 .1 of [6 ],
after noticing that, for any k, Mk(U(t)u) and Pk(U(t)u) are constant in time,
while

We can now prove the existence of local solutions of (2.11). For any
interval I and any Banach space ~ we denote by E8) the space of conti-
nuous functions from I to and, for any positive integer I, we denote
by ~) the space of I-times continuously differentiable functions
from I to ~. For compact I, ~) is a Banach space when equipped
with the Sup norm.

PROPOSITION 2 .1. - Let k = [n/2 + 1 ] ([/L] ] is the integral part of ;w)~
V E ~k + 1 ( ~ + ) and Then, there exists a To &#x3E; 0, depending on
I , such that (2.11) has a unique solution u e W( [ - To, To ], 

Proof - The proof runs in the same way as that of Proposition 2.1
of [6 ] after noticing that the multiplication by a function of Hk is a bounded
operator both in H~ and in H’‘ -1. Q. E. D.
Under additional regularity assumptions on the potential V and on the

initial data one can prove additional regularity properties of the solutions.

PROPOSITION 2.2. - = [n/2 + 1 ], let and let

uo E Let I be an interval of ~ containing the origin and let u E fk)
be a solution of (2.11). Then u E ~l(I, ~~~ - ~) for any 1, 0 ~ I ~ k’.

Vol. XXXVI, n° 1-1982.



66 J. GINIBRE AND G. VELO

Proof - The proof is similar to that of Proposition 2 . 2 of [6], but
slightly more complicated because of the choice of the spaces. We shall
therefore present the estimates in some detail. First we prove that ffk’)
by induction. Let therefore u E for some 1, k  1 ~ k’. We
want to show that u E or equivalently that, for any multiindex x,
with a == 1 - belongs to ffk). Now v03B1 E Kk - 1) and v°‘
satisfies the equation

where a labels the various components of u, and g" is a polynomial in the
space derivatives of u of order at most 1 - k - 1 and in the derivatives
of f with respect to u of order at most I - k. We want to show that (2.27)
considered as a linear integral equation for vrx has a unique solution both
in and ). This will prove that ~03B1u E and complete
the induction. For this purpose it will be sufficient to show that

belongs to ffm) if v" belongs to ffm) for m = k, k - 1, and that

belongs to ffk). We consider the terms in h" and g" containing
only A and F : the terms containing 4&#x3E; and g/, including those coming from
the potential V, can be treated in the same way. Now h" contains terms of
the type A/" and Fa", where a" and f " are the A and F components
of By the induction assumption we know that componentwise

2). We take a" E and f" E 
with m being either k or k - 1, and we have to show that Aa" belongs
to Hm) and that and Fa" belong to H"~~ ~). This is a conse-
quence of the Sobolev inequalities, which imply that multiplication by
a function in Hk is a bounded operator in Hr for - k S r  k and that
the product of two functions in Hk -1 lies in Hk - 2, with continuity. Similarly,
the terms with A and F in .g" have the form and with

1J (xj I + = 1 - k. We have to show that for Hl-I)
and 2), these terms lie in Hk) and respectively.
This again follows from the Sobolev inequalities as above.

The end of the proof is the same as that of Proposition 2 . 2 of [6 ] with
appropriate changes. Q. E. D.

So far we have considered the system (2.4) and (2.5) without taking
into account the constraints (2. 6), (2.7) and (2. 8). We now show that the
constraints are preserved in time.
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Let I be an interval of ~ containing the origin and let u E be a

solution of (2.11). Let Q be an open subset of possibly [R" itself. Let uo
satisfy (2. 6) (resp. (2. 8)) in Q at t = 0. Then u(t) satisfies (2.6) (resp. (2. 8))
in Q for all If in addition uo satisfies (2. 7) in Q at t = 0, then u(t)
satisfies (2. 7) in Q for all t ~ I.

Proof - From Proposition 2.2 it follows that the quantities

and f1j - belong to componentwise. Furthermore,
by (2.4) and (2.5), they satisfy

with initial conditions = 0 and = 0 in Q. From the fact that

Ao E H~) and that multiplication by a function in Hk is a bounded
operator in Hk - 2(S~~ it follows that = 0 and = 0 in S2 for all times.

Similarly, from Proposition 2.2 it follows that

componentwise. From (2.4), (2.5) and the previous constraints it follows
that

in Hk- ~(Q). Using again the fact that multiplication by Ao E Hk is a bounded
operator in Hk - 2(S~), we see that K° satisfies (2. 30) in Hk - 2(SZ). Together
with the initial condition K° = 0 in Q at t = 0, (2.30) implies that K°
vanishes in Q for all times. Q. E. D.

3. THE CAUCHY PROBLEM IN LOCAL SPACES
FOR SMALL TIME INTERVALS

In this section we extend the theory developed in Section 2 to a theory
in local spaces. The general framework is described in Section 3 of [6] to
which we refer for details. For the convenience of the reader we recall a
few definitions. We call dependence domain any open subset Q x [Rn

such that, for any (t, x) E Q, Q contains the set

The sections of Q at fixed time t are denoted by

Vol. XXXVI, n° 1-1982.



68 J. GINIBRE AND G. VELO

and are open. For any open ball Q = B(x, R) with center x and radius R
and for any t E R, we define

with the convention that B(x, R) is empty if R ~ 0. We also define

which is a dependence domain for t &#x3E; 0.
We next define the local spaces. Let k be an integer, k a 1. In Section 2

we have defined %k as a direct sum of usual Sobolev spaces Hm with
m = k or m = k - 1. For any open (respectively bounded open) set Q ci 
we define (respectively as the corresponding direct sum
of the Sobolev spaces (respectively The space is a
Hilbert space with norm

where and Pk,n are defined by formulas similar to (2.17), (2.18),
(2.19) where however the L2-norms are now taken in For Q = [?",
we shall denote by For suitable dependence domains Q,
we shall be interested in Kkloc-valued solutions of equation (2.11) in Q in
the sense of Section 3 of [6] (see especially (3.17) of [6 ]).
The crucial property of the free evolution is the following local version

of Lemma 2.1.

LEMMA 3.1. - For any integer k, k a 1, U(t) is a strongly continuous
one-parameter group in Kkloc and, for any t e R for any open ball Q c fR",
for any u E the following estimate holds

where is defined by (2.25).

Proof - The proof runs in the same way as that of Lemma 4.1 of [6 ].
One first proves that, for any smooth u, for any non negative integer k
and any open ball Q, 

,

From there on the proof proceeds as that of Lemma 2 .1 of [6 ]. Q. E. D.
We can now state the local existence result that follows from the general

theory presented in Section 3 of [6 ].

PROPOSITION 3.1. - Let k = [n/2 + 1 ], and 
Then there exists a dependence domain Q with Q(0) = [?" and a (unique)
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69THE CAUCHY PROBLEM FOR COUPLED YANG-MILLS AND SCALAR FIELDS

Kkloc-valued solution of the equation (2.11) in Q (in the sense of Section 3
of [6 ]).
The regularity result of Section 2 can also be extended to the theory

in local spaces. We denote by rn the operator in of restriction to Q,
namely the operator of multiplication by the characteristic function of Q.

PROPOSITION 3. 2. = [n/2 + 1 ], let V E ~k~(f~ + ), let Q be
a dependence domain, let uo E Kk’loc(Q(0)) and let u be a Kkloc-valued solution
of (2.11) in Q. Then, for any t &#x3E; 0 and any open ball Q in [R" with closure

contained in Q(t), rgzu E [0, t ], for any 1, 0 ~ 1 ~ k’. In parti-
cular u is a Kk’loc-valued solution of (2.11) in Q.

REMARK 3.1. - For 1 = k’, the statement of Proposition 3.2 involves
the space yet undefined. The fact that E ~~(Q)) means
that each component of rQA and belongs to L~(Q)) and that
each component of r03A9F and rQt/J belongs to H-1(0)), where H-1(0)
is defined as in [11 (p. 213).
The proof of Proposition 3.2 is essentially the same as that of Propo-

sition 4 . 2 of [6 ] and will be omitted. -

Finally the constraints are locally preserved in time also in the local
theory.

PROPOSITION 3 . 3. - Let k = [n/2 + 1 ], let V E let Q be depen-
dence domain, let u° E and let u be a Kkloc-valued solution
of (2.11) in Q. Let T &#x3E; 0 and let Q be an open ball in ~n with closure
contained in Q(T). Let uo satisfy (2.6) (resp. (2 . 8)) in Q. Then u(t) satisfies (2.6)
(resp. (2. 8)) in Q for all t E [0, T ]. If in addition uo satisfies (2. 7) in Q, then
u(t) satisfies (2. 7) in Q for all t E [0, T].

Proof - Identical with that of Proposition 2.3. Q. E. D.

4. EXISTENCE OF GLOBAL SOLUTIONS

In this section we prove the existence of global solutions of (2 .11 ) for
n = 1 and make some comments on the case n = 2. The proof relies on
a priori estimates of the solutions in xk. As mentioned in the introduction,
the derivation of some of these estimates requires the use of the elliptic
constraint K° = 0 (see (2.2)). As a consequence the method of proof of
global existence in local spaces used in Proposition 5 . 3 of [6 ] no longer
works since it is based on a cut off procedure which is not compatible
with the constraint. We shall therefore use a different method which

requires in particular a local version of the basic estimates. These local
estimates will be derived in Propositions 4.1 and 4. 2 below. Their deriva-
tion requires integration by part in truncated cones of the type (3.3).

Vol. XXXVI, n° 1-1982.
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For this purpose we need smooth approximations of the solutions of (2 .11 ).
We therefore begin by introducing a regularization procedure.
Let h be a real positive even function in 1 

= 1 and

let ~"~M = mnh(xm). Together with the original problem associated
with the Lagrangian density (2.1), we also consider the similar problem
obtained by formally replacing p) in (2 .1 ) by V( htm~ * ~ ~ p) where *
denotes convolution in !R". The corresponding variational equations
are (2.2) and

where

They are not compatible in general since the current is no longer conserved.
However, if one drops the equation K° = 0 and chooses the dynamical
variables and the gauge condition as in Section 2, the remaining system
can be written as

supplemented by the constraints (2.6) and (2.8), where j(m) is obtained
from f by replacing ~V’( ~ ~ 12) by h~m~ ~ g~rn~(~). We shall approximate
solutions of (2.11) with uo E ffk for suitable k by solutions of the equation

LEMMA 4.1. - Let k = [n/2 + 1 ], and Then :

(1) There exists a To &#x3E; 0, depending on II u0 I 1 but independent of m,
such that (2.11) has a unique solution M6~([- To, To ], ffk) and (4 . 4)
has a unique solution E ~( [ - To, To ], 

(2) Let I be a closed interval of R containing the origin and let Kk)
be a solution of (2.11). Then, for m sufficiently large (possibly depending
on I and uo), there exists a unique solution of (4. 4) in ffk) and 
tends to u in %k) as m tends to infinity.

(3) Let I be an interval of R containing the origin and let u E ffk)
be a solution of (4 . 4). Then, for any I ~ 1, u E 1(I, 

Proof (1) The proof is the same as that of Proposition 2.1. The unifor-
mity in m follows from the fact that the basic estimates can be taken uniform
in 

(2) The proof is similar to that of the continuity of the solution of (2.11)
with respect to the initial data [9 ], with the additional complication that
the equation itself depends on m. One first proves the statement for small
time intervals, as considered in part (1), and then extends it to the whole
of I by splitting I into a finite union of such intervals. That the second step
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is at all possible follows from the existence of the solution u. We omit
the details.

(3) The statement follows by differentiating (4.4) once in which

yields (4. 3), and then by successive differentiation of (4. 3). The limitation
to follows from the assumption on V. Q. E. D.

In all this section we shall assume that the potential satisfies the condition

for some a ~ 0. The first estimate we shall use is the local version of the
energy conservation. For any open ball Q in [Rn, for any

we define the local energy

where II. denotes the norm in Lq(Q), 1  q  oo. We also define

If u depends on t, we denote by and Ea(t) the corresponding quantities
associated with u(t).

PROPOSITION 4.1. - Let k = [n/2 + 1 ], let satisfy the
condition (4. 5), let Uo E ffk, let I be an interval of [R containing the origin
and let u E ~(1, ffk) be a solution of (2 .11 ). Then, for any open ball Q in [R"
and any t e I, u satisfies the estimates

where

Proof - By Lemma 4.1, for sufficiently large m, (4.4) has a unique
solution E 1( [0, t ], ~’l) for any l ~ 1. In particular

Vol. XXXVI, n° 1-1982.



72 J. GINIBRE AND G. VELO

is 1 of space-time componentwise. We now define

and

Using the field equations we obtain

where

and

We next integrate (4.14) in _the truncated cone Q(Q, t) (see (3 . 3)) and
apply Gauss’s theorem. Since 0~ is outgoing on the side surface of Q(Q, t),
we obtain

Now it follows from Lemma 4.1 that, when m tends to infinity, all terms
in (4.17) have well-defined limits (in particular x) tends to zero).
so that (4.17) becomes J

Similarly, for any re [0, t ], we have

Let

Applying Schwarz’s inequality to the last term on the RHS of (4.18) and
increasing the integration domain in the RHS of (4.19) we obtain

and

Annales de l’Institut Henri Poincaré-Section A



73THE CAUCHY PROBLEM FOR COUPLED YANG-MILLS AND SCALAR FIELDS

Substituting (4.22) into (4.21) we obtain

from which (4.8) and (4.11) follow by an elementary computation. The
estimate (4.9) then follows from (4.22). In order to prove (4.10) we first
notice that from the field equations it follows that satisfies the relation

Integrating (4.24) over Q(Q, t), applying Gauss’s theorem, letting m tend
to infinity and using (4.8), we finally obtain (4.10). Q. E. D.
The previous proposition holds for any space-time dimension. We

now concentrate on the case n = 1 and estimate the components of A
in 

PROPOSITION 4.2. - Let n = 1, let V E ~2(f~+) satisfy the condition (4.5),
let Q = B(x, R) = (x - R, x + R) be an open interval in R with R &#x3E; 1,
let uo E $’1 satisfy the constraints (2 . 7) and (2 . 8) in Q. Let I be an interval
of R containing the origin and let be a solution of (2 .11 ).
Then, for any satisfies the estimate

for some estimating function Po. independent of t.

and

We shall prove the result by deriving an a priori estimate on the quantity

This will follow from an integral inequality which will be derived by the
use of the cut off procedure of Lemma 4.1. By this lemma, for sufficiently
large m, (4 . 4) has a unique solution E ~2( [0, t ], for any t ~ 1.

In particular, = (A~B F~m~, 1/1(m») is CC2 of space-time component-
wise. By a straightforward computation, using the equations of motion,
we obtain

Vol. XXXVI, n° 1-1982.
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where

and Kbm) is the quantity Ko computed for M~B We next integrate (4.28)
on the truncated cone Q(Q, t) (see (3.3)) and apply Gauss’s theorem.
Since B~(A~m~) is outgoing on the side surface of Q(Q, t), we obtain

We now let m tend to infinity. From Lemma 4.1 part (2), it follows that
and a~(u~m~) tend to eo{A) and respectively in CC( [0, t ], 

We now show that Kbm) tends to zero in ~([0, t ], so that its contri-
bution to the RHS of (4.30) tends to zero. For this purpose we first consider
the constraint (2 . 8) : we note that the quantity D lm~~~m~ _ ~, lm~ satisfies
the equation 

, ,, , ,,_B , . /_--" - 

with the initial condition

in Q. From this and from Lemma 4 .1, part (2), it follows that 
tends to zero in ~( [0, t ], H 1 (SZ)) when m tends to infinity. We next consider
the quantity where is the current JI1 computed for t~. From
the equations of motion it follows that, for any C E rg,

It follows from the previous argument and from Lemma 4.1, part (2),
that the first term in the RHS of (4. 33) tends to zero in CC( [0, t ], L 2(Q));
the second term also tends to zero in CC( [0, t ], L~(Q)) by Lemma 4.1,
part (2). We finally turn to From the equations of motion it follows
that

and therefore

with
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in Q. In particular tends to zero in From this, from (3.34)
and the fact that tends to zero in ~( [0, t ], L~(Q)), it follows that Kbm)
also tends to zero in CC( [0, t ], 
Taking the limit m - oo in (4.30), we obtain therefore

The quantity 17(u) contains terms of various types and we now estimate
their contributions to the space integral at time ~ in (4.36). For brevity
we omit the time ~ and the spacetime indices; all space integrals and LP
norms are taken in Q~(r). We obtain

We estimate the L CYJ norms through the local one dimensional Sobolev
inequality (covariant or non covariant) 

’

where L is the length of the interval under consideration, in the present
case L = 2(R - i) ~ 2(R - t) ~ 2. We then estimate the norms 111/1112,
t!~!~ !)~!t2 by Proposition 4.1 and obtain from (4 . 36) a
sublinear inequality for the function of t defined by the L. H. S. The result
finally follows by a straightforward application of Gronwall’s inequality.

Q. E. D.
For n = 1, Propositions 4.1 and 4.2 provide an a priori control of F

and 1/1 in L2 (componentwise) and of A in In order to complete the
a priori control of u in r.~’ 1, which is the relevant space for n = 1, it suffices
in addition to estimate 4&#x3E; in Hi. This is done easily by using the equations
of motion and the fact that 4&#x3E; E L2 and A E Hi, so that the norms defined
with ordinary and covariant derivatives are equivalent (see Lemma 5.6
of [6 ]).

REMARK 4.1. - In Propositions (4.1) and (4.2) we have given a local
version of the estimates needed to prove the existence of global solutions.
As mentioned at the beginning of this section, this local form of the estimates
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is necessary to establish global existence in local spaces. If one is interested
in solutions in global spaces, one needs these estimates only in global
form, namely with Q replaced by In this case the proof simpler (compare
with Lemma 5.1 of [6 ]).
We are now in a position to prove the global existence result in the

case n = 1. We first state the result in global spaces.

PROPOSITION 4. 3. - Let n = 1. let V E CC2(lR +) satisfy the condition (4. 5),
let uo E %1 satisfy the constraints (2. 7) and (2. 8). Then the equation (2.11)
has a unique solution u in CC(lR, Xl) and u satisfies the constraints (2.7)
and (2.8) for all times.

Proof - The result follows by standard arguments from Proposition 2 .1
and from the estimates of Propositions 4.1 and 4.2 in the global form
described in Remark 4.1. Q. E. D.
The global theory in local spaces requires a more careful treatment.

In the proof we shall need the fact that, for any open ball Q = B(x, R),
there exists an extension in which is a bounded map from gk(Q) to ~’‘
such that = u for all u E and that

for all Furthermore, one can choose Ci(Q) independent of x
and uniformly bounded for R ~ 1 (see Sect. 3 of [6 ] and [1 ]) : Cl
for R ~ 1. In what follows we shall make such a choice. We can now state
the global existence result.

PROPOSITION 4 . 4. - Let n = 1, let V E ~2(1R +) satisfy the condition (4. 5),
let uo E satisfy the constraints (2. 7) and (2. 8). Then the equation (2 .11)
has a unique solution u in and u satisfies the constraints (2.7)
and (2.8) for all times.

Proof - We first prove that for any open interval Q = B(0, R) = (- R, R),
there exists a (unique) K1loc-valued solution uR of (2.11) in the truncated
double cone Ai(R) * Q(Q, R - 1) u Q(Q, - R + 1) (see (3. 3)), in the
sense that the restriction of uR to Q(Q, R - 1) is a K1loc-valued solution
of (2.11) in Q(Q, R - 1) and that a similar property, defined by an obvious
symmetry, holds in Q(Q, - R + 1). For this purpose, we first note that
if u is a K1loc-valued solution of (2.11) in Ai(R), then by Propositions 4.1
and 4.2, u satisfies an estimate of the type

for some estimating function y~ uniformly in t for 0 ~ ~ ~ R - 1. As
a consequence, for any t with 0 # R - 1,
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It follows now from Proposition 2.1 and its proof that, for any s,
0 x R - 1, the equation

has a unique solution in To, s + To ], Jf~), where To can be taken
independent of s because of (4.40). We choose such a To and construct
now a solution of (2 .11 ) in Ai(R). For brevity we consider only the case
of positive time. Let tj = jTo, 0 ~’ ~ [(R - l)/To] ] and Ij = t~+ 1 ].
Applying Proposition 2.1, we define v J E %1) as the solution of (4 . 41 )
with s = tj and with u(s) replaced by uo for j = 0 and by for j  l.
Clearly, if we define u(t) = v j( t) for t e 1~, then the restriction t~ of u to
Q(Q, R - 1 ) is a K1loc-valued solution of (2 .11 ) in Q(Q, R - 1 ). Combining
this construction with the similar one in Q(Q, - R + 1), we obtain the
announced solution ~ in Ai(R).
The end of the proof consists in taking an increasing sequence { Rn }

tending to infinity and gluing together the solutions uRn in constructed
as above. The argument is the same as in the proof of Proposition 5.3
of [6] to which we refer for more details. Q. E. D.
We conclude this section with some comments on the case of dimen-

sion n = 2. In this case (as well as for n = 3), the relevant space is %2 so
that one needs to control F and 03C8 in H1 (componentwise) and A and 03C6
in H2. In order to estimate F and 03C8 in it is natural to consider the
quantity Ei 1 as in [6 ] (see (5 . 2) of [6 ]). For n = 2 and if the Yang-Mills
field is massless (K = 0), Ei 1 which is gauge invariant, can be controlled
exactly in the same way as in the temporal gauge, both globally (see
Lemma 5 . 2 of [6 ]) and locally. However, even in the massless case, the
proof of Proposition 4.2 breaks down for n = 2 and we are unable to
control A in If the Yang-Mills field is massive, the difficulty occurs
already at the level of Ei, and we are unable to control Ei in that case.
In all cases, the last step, namely the control of A in H2, knowing that F,

and A are in can be done easily.
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