Integrability for representations appearing in geometric pre-quantization
Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Volume 36 (1982) no. 3, pp. 189-199.
@article{AIHPA_1982__36_3_189_0,
     author = {Werth, J.-E.},
     title = {Integrability for representations appearing in geometric pre-quantization},
     journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
     pages = {189--199},
     publisher = {Gauthier-Villars},
     volume = {36},
     number = {3},
     year = {1982},
     mrnumber = {664631},
     zbl = {0504.58024},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1982__36_3_189_0/}
}
TY  - JOUR
AU  - Werth, J.-E.
TI  - Integrability for representations appearing in geometric pre-quantization
JO  - Annales de l'institut Henri Poincaré. Section A, Physique Théorique
PY  - 1982
SP  - 189
EP  - 199
VL  - 36
IS  - 3
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1982__36_3_189_0/
LA  - en
ID  - AIHPA_1982__36_3_189_0
ER  - 
%0 Journal Article
%A Werth, J.-E.
%T Integrability for representations appearing in geometric pre-quantization
%J Annales de l'institut Henri Poincaré. Section A, Physique Théorique
%D 1982
%P 189-199
%V 36
%N 3
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1982__36_3_189_0/
%G en
%F AIHPA_1982__36_3_189_0
Werth, J.-E. Integrability for representations appearing in geometric pre-quantization. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Volume 36 (1982) no. 3, pp. 189-199. http://archive.numdam.org/item/AIHPA_1982__36_3_189_0/

[1] R. Abraham and J.E. Marsden, Foundations of Mechanics, The Benjamin, 1978. | MR | Zbl

[2] H.D. Doebner and J.-E. Werth, Global properties of systems quantized via bundles, J. Math. Phys., t. 20, 1979. | MR | Zbl

[3] B. Kostant, Quantization and unitary representations, Lecture Notes in Mathematics, t. 170, Springer, 1970. | MR | Zbl

[4] S. Lang, Differential Manifolds, Addison-Wesley, 1972. | MR | Zbl

[5] R.S. Palais, A global formulation of the Lie theory of transformation groups, Mem. of the Amer. Math. Soc., t. 22, 1957. | MR | Zbl

[6] J.W. Robbin, Symplectic mechanics, Global analysis and its applications, t. III, I. A. E. A., Vienna, 1974. | MR | Zbl

[7] J.-M. Souriau, Structure des systèmes dynamiques, Dunod, 1970. | MR | Zbl

[8] J.-E. Werth, On quantizing A-bundles over Hamilton G-spaces, Ann. Inst. H. Poincaré, Sec. A, t. XXV, 1976. | EuDML | Numdam | MR | Zbl

[9] J.-E. Werth, Group actions on quantum bundles, Rep. on Math. Phys., t. 15. 1979. | MR | Zbl