All linear representations of the Poincaré group up to dimension 8
Annales de l'I.H.P. Physique théorique, Tome 40 (1984) no. 1, pp. 35-57.
@article{AIHPA_1984__40_1_35_0,
     author = {Paneitz, Stephen M.},
     title = {All linear representations of the {Poincar\'e} group up to dimension 8},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {35--57},
     publisher = {Gauthier-Villars},
     volume = {40},
     number = {1},
     year = {1984},
     mrnumber = {745680},
     zbl = {0537.22021},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1984__40_1_35_0/}
}
TY  - JOUR
AU  - Paneitz, Stephen M.
TI  - All linear representations of the Poincaré group up to dimension 8
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1984
SP  - 35
EP  - 57
VL  - 40
IS  - 1
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1984__40_1_35_0/
LA  - en
ID  - AIHPA_1984__40_1_35_0
ER  - 
%0 Journal Article
%A Paneitz, Stephen M.
%T All linear representations of the Poincaré group up to dimension 8
%J Annales de l'I.H.P. Physique théorique
%D 1984
%P 35-57
%V 40
%N 1
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1984__40_1_35_0/
%G en
%F AIHPA_1984__40_1_35_0
Paneitz, Stephen M. All linear representations of the Poincaré group up to dimension 8. Annales de l'I.H.P. Physique théorique, Tome 40 (1984) no. 1, pp. 35-57. http://archive.numdam.org/item/AIHPA_1984__40_1_35_0/

[1] A.O. Barut and R. Raczka, Theory of Group Representations and Applications, Polish Scientific Publishers, Warsaw, 1977. | MR

[2] W.A. Hepner, The Inhomogeneous Lorentz Group and the Conformal Group, Nuovo Cimento, t. 26, No. 2, 1962, p. 352-368. | MR | Zbl

[3] L. Hlavaty and J. Niederle, Relativistic Equations and Indecomposable Representations of the Lorentz Group SL(2, C), Czech. J. Phys. B, t. 29, No. 3, 1979, p. 283-288. | MR

[4] N. Jacobson, Lie Algebras, Interscience Publishers, New York, 1962. | MR | Zbl

[5] G. Mack and Abdus Salam, Finite-component Field Representations of the Conformal Group, Ann. Phys., t. 53, 1969, p. 174-202. | MR

[6] S.M. Paneitz and I.E. Segal, Analysis in Space-time Bundles. I. General Considerations and the Scalar Bundle, J. Func. Anal., t. 47, No. I, 1982, p. 78-142; II. The Spinor and Form Bundles, J. Func. Anal., t. 49, 1982, p. 335-414. | MR | Zbl

[7] I.E. Segal, Covariant Chronogeometry and Extreme Distances III: Macro-Micro Relations, Proc. Dirac conf., Loyola University, 1981, Int. J. Theor. Phys., t. 21, 1982, p. 851-869. | MR

[8] I.E. Segal, Chronometric cosmology and fundamental fermions, Proc. Natl. Acad. Sci., U. S. A., t. 79, 1982, p. 7961-7962. | MR

[9] I.E. Segal, in Les Problèmes Mathématiques de la Théorie Quantique des Champs, Proc. Lille conf., 1957, C. N. R. S., Paris.

[10] I.E. Segal, Interacting Quantum Fields and the Chronometric Principle, Proc. Nat. Acad. Sci., U. S. A., t. 73, October 1976, p. 3355-3359 et s. | MR