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A Generalization of Dixon’s Description
of Extended Bodies (*)

Ruprecht SCHATTNER (1) Gisbert LAWITZKY (2)

Ann. Henri Poincaré,

Vol. 40, n° 3, 1984, Physique ’ théorique ’

ABSTRACT. Dixon’s work on the description of extended bodies in
General Relativity is extended to include non-metric theories of gravity
and a special class of distributional energy momentum tensors. Several
splitting theorems are proven and are used to define momentum, angular
momentum and the « skeleton », as well as to investigate their properties.
We then define reduced moments and prove a reconstruction theorem :
A momentum, an angular momentum and a « skeleton » obeying Dixon’s
laws of motion determine an (admissible) mass tensor.
RESUME. 2014 Les resultats de Dixon sur la description des corps etendus

en relativite generate sont generalises pour qu’ils s’appliquent aux theories
non metriques de gravitation et a une classe speciale de tenseurs impulsion-
energie distributionnels. On demontre plusieurs theoremes de decompo-
sition et on s’en sert pour definir et etudier 1’impulsion, Ie moment cinetique
et Ie « squelette ». On definit ensuite des moments reduits et on demontre
Ie theoreme : Une impulsion, un moment cinetique et un « squelette »
qui satisfont les lois de mouvement de Dixon determinent un tenseur de
masse admissible.

1. INTRODUCTION

Since the comparison of general relativity theory with astrophysical
observation is based mainly on measurements performed on practically
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292 R. SCHATTNER AND G. LAWITZKY

isolated systems consisting of a finite number of discrete bodies, the study
of such systems merits considerable attention.
At present we are still far from exact quantitative statements about the

motion of the constituents of such systems. So far the research on this
subjects has proceeded along three major lines:
The first on deals with various plausible, but not rigorously justified

approximation schemes. For slow motion, weak-field situations one

recovers Newton’s equations as a first approximation :
The CM-motion of a single body appears to be largely independent

of its detailed internal structure and can be calculated to high accuracy
from a knowledge of a few parameters ; furthermore, the motion is inde-
pendent of the « self field » of the body and completely determined by
the field produced by the other bodies in the system (see Dixon’s Varenna
Lectures [8] for a detailed exposition). One expects, that a similar behaviour
should also persist in some higher orders of the approximation scheme.
Unfortunately, at present all existing approximation methods are plagued
by mathematical or conceptual difficulties.
The other two lines treat certain aspects of the problem in an exact,

covariant manner : The (expected) asymptotic structure of spacetime far
away from material sources, and the local structure and motion of the
bodies relative to an unspecified gravitational field (i. e. not the full field

equations, but only their consequence ~. T = 0 are used). The local

theory has been developed by W. G. Dixon ( [3 ]- [8 ]) and continued by
J. Ehlers and E. Rudolph ( [9 ]), and R. Schattner ( [15 ]). Their work shows
that even in the general relativistic context one can introduce concepts
such as CM-line, (reduced) moments, force, and torque, and a mass-constant,
having certain desirable properties.
Each of these three different approaches has its merits and drawback ;

there remains the challenging problem of combining them in a satisfactory
manner. One wishes to connect the local quantities (mass, momentum,
angular momentum, ... ) with the corresponding asymptotic quantities
(some attempts in this direction have been made by R. Schattner
and M. Streubel [1t3 ] [21 ]) and to link Dixon’s theory to (controlled)
approximation methods incorporating some nice features of the Newto-
nian description (e. g. separation of a « self-field », motion dominated

by a few parameters).
In this paper the main subject of research is the relation between the

« skeleton », a mathematical object representing the structure of the body,
and the energy-momentum tensor. Dixon has proven that in a metric theoryof gravity the following holds : Suppose one has a smooth symmetric 0152)tensor field T whose support is contained in a spatially bounded, timelike
world tube, and which satisfies the local law of timelike

l’Institut Henri Poincaré - Physique theorique



293DIXON’S DESCRIPTION OF EXTENDED BODIES

worldline ~; and a timelike unit vector field u along 1. Then there exist
a momentum P, an angular momentum S and a skeleton T satisfying
Dixon’s integral laws of motion (and some further conditions in order
to ensure the uniqueness of T). P, Sand T together (satisfying Dixon’s
integral laws of motion) contain the same information as the energy-
momentum tensor T (satisfying the local law of motion). The representation
of a body by (P, S, T) provides the decisive advantage that the complicated
system of partial differential equations V T = 0 has been replaced by
finitely many ordinary differential equations for globally defined quantities
which closely resemble the corresponding Newtonian and special-rela-
tivistic equations.
The momentum P is a vector field along l, the angular momentum S

is a bivector field along l, and the skeleton T is a one-parameter family
of distributions on the tangent spaces along l acting on symmetric (0)-
tensor fields over the natural projection.

Dixon’s proof is constructive, and Dixon gives a formula that indicates
how to reconstruct T from (P, S, T). But inserting an « arbitrary » triple
(P, S, T) in the reconstruction formula, one obtains in general, not a smooth
tensor field T, but only a linear functional. So the question arises of what
spaces of T’s and T’s one has to choose in order to make the relation
between T and (P, S, T) symmetric. We will give an-at least partial
answer to this question : We will give definitions of suitable spaces which
allow one to establish symmetry between the two descriptions of the body.
Our T’s will in general be not smooth functions, but rather special distri-
butions. (Hence, admittedly our result is not completely satisfactory).
Thus we will have to pay due attention to the functional analysis of such
objects. Furthermore, in view of the aforementioned interesting questions
concerning the relation between the Newtonian and the relativistic descrip-
tion of bodies, we will formulate our theory without using any metric
structure on spacetime. In fact, all of our constructions will depend only
on a few assumptions which hold true for a wide class of theories of gra-
vity : That spacetime be a 4-manifold endowed with a symmetric linear
connexion V and that matter be described by a symmetric (o) tensor field
whose covariant divergence vanishes.

We have tried to keep paper self-contained even though many ideas
and proofs have been adapted from Dixon’s work.

After the introduction of our notation ana convections, in section 3
we motivate and formulate our basic assumptions. We define function
and distribution spaces which are well suited for our purposes (in appendix 1
we summarize some statements on test field spaces and distributions,
while in appendix 2 we briefly discuss some special bitensor fields,
cf. [7~] ] [77] ] for details).

Vol. 40, n° 3-1984.



294 R. SCHATTNER AND G. LAWITZKY

Section 4 is devoted to decomposition theorems for test field spaces.
These splitting theorems are in their original form (without consideration
of topological and support properties) due to Dixon and play the key
role in the construction of the skeleton. In the fifth section we define
momentum P, angular momentum S and a « skeleton » T for our mass
tensor distribution T. We investigate their properties and show that the
set (P, S, T) completely determines the action of T on the test field space,
and furthermore, that Dixon’s integral laws of motion are satisfied. In
section 6, we ask a converse question : How to construct a mass tensor T
from a given triple (P, S, T) which has the appropriate properties ? Reduced
moments are defined and are used to establish statements about the struc-
ture of T. These allow one to prove a reconstruction theorem which symme-
trizes completely the relation between T and (P, S, T) : a set (P, S, T)
satisfying Dixon’s laws of motions determines an admissible tensor Tab
obeying V T = 0.

2. NOTATION AND CONVENTIONS

For a manifold M, MZ denotes the tangent space z E M, TM ~ M the
tangent bundle, M the tensor bundle of type (r, s). The subspaces _

satisfying certain symmetry conditions are denoted by an indication
of the symmetry class in brackets, e. g. is the space of twice covariant

symmetric tensor fields (irreducible symmetry [2 ]).
For a set L c M, (Ts, T)L is the space of rc -1 (L) -~ T~M

such that 7~ o ~r = ~c (« tensor fields of type (r, s) over 7r ~ [6 ]).
(.)~ means partial differentiation. Covariant differentiation is denoted

by’ 
, 

V,,..,, := ($03BB)ab := -~(a03BBb), ~bcAa - ~cbAa = RdabcAd.
Absolute differentiation along a curve ;c(M) is denoted by D~ or 2014.

Tabe - Tbca + Tcab. 
g ( ) Y u 

du

The space of two-point-tensor fields (bitensor fields) on M is denoted
by If the arguments z, x are restricted to subsets Z c M, X ç; M,
we write x X). We use i, k, l, ... for indices at z, a, b, c, ... for
indices at ~. ( a &#x3E; is the coincidence limit of the bitensor field a.

With the aid of the relative position Xk :_ - 6k(z, x) (see Appendix 2)
we can treat a two-point tensor field t(z, x) with scalar character at x as
function of z and X rather than of z and x.

Let A, B be vector fields on TM over 7r, ~r E (Ts, T)M. We have a covariant
directional derivative with ~*k as in [6] ] [~].

(In natural coordinates on is just ~ ~Xk; ~*k03C8 == 

l’Institut Henri Poincaré - Physique theorique



295DIXON’S DESCRIPTION OF EXTENDED BODIES

3. BASIC ASSUMPTIONS.
RESTRICT ABLE DISTRIBUTIONS

It is well known (see e. g. [77 ] [22] ] [13 [7] ] [10 ]) that when formulated
properly in the language of differential geometry the Newtonian theory
of gravity has several structures in common with Einstein’s theory (which
has been expressed in that language from the beginning). In fact, both
theories can be described as special cases within a whole family of theories
of spacetime and gravity for which there exists a common framework
(see e. g. [7~]).

In the subsequent sections we will actually use only some rudimentary
aspects of these theories : The basic objects in our presentation are

i) a 4-dimensional C~-manifold M,
ii) a symmetric linear connexion V on M (describing « inertia » and

« gravity »), and
iii) a twice contravariant, symmetric tensor field the covariant

divergence of which vanishes :

(3 .1 )

Tab represents the distribution of mass, momentum and stress of the matter,
and will be frequently referred to as the « mass tensor ».
Note that we use neither any metric structure on M nor field equations

nor the notion of timelike/spacelike vectors nor any energy condition, etc.
We want to describe the behaviour of an isolated single body with respect

to a suitable observer. Hence we require the following :
There exists a closed set W such that supp W, (3 . 2)

a worldline l = z(s) contained in W (representing the observer) and a
covector field along l (determining the local rest space of the observer),

0 for all s.

We choose a parametrization such that = 1 for all s . (3 . 3)

3.1. REMARKS. 2014 Using more structure on M and much stronger condi-
tions than above, one can single out a unique pair (l, uk) ; l is then considered
to be the centre-of-mass worldline and uk the surface element determining
the local rest space of the system (cf. [t3 ] [7~]). This choice is appealing
but not necessary for our treatment. It is, however, a « natural » prescription
in order to obtain well-defined, uniquely determined laws of motion.
For technical reasons, we impose further conditions on W, l, uk :
There exists an open submanifold N ~ M with the following properties :
i) W c N;

Vol. 40, n° 3-1984.



296 R. SCHATTNER AND G. LAWITZKY

ii) For any x E N there exists a uniquely determined point z(s) E l and
a unique vector 03BEk at z(s) with = 0 such that the geodesic .v(u) with

is completely contained in N, connects x and z(s), and .v( 1 ) = x.
Then a (Fermi-) coordinate system which covers N can be constructed
as follows : . Let a,=1, 2, 3, be three linearly independent smooth
vector fields along l, ukek = O. Let 03B603B1ek03B1(S). Then x has coordinates (s, 03BE03B1).
Let N denote the hypersurface s = so. is star-shaped with
respect to z(so). We have a smooth « time function » t on N :

Furthermore we assume :

iii) For any s1s2 W is compact.

iv) There exists an open subset V c: 7r ~) with the following properties :
is well defined on VS := V n U~ :== is a normal

neighbourhood of z(s), star-shaped w. r. t. z(s), N. For x E US
x) is well-defined.

We have a diffeomorphism from V into an open subset U of l x M,
defined (in natural coordinates) by (s, X) H (s, X).
We assume the existence of a continuous linear map E : Ø"(V) ~ ~(7r’ B~))

and of an open neighbourhood V of (~(s) n W) such
S~R

that for all C E [I&#x3E;] I V1 == I&#x3E; (Obviously this assumption is implied
by some additional geometrical restrictions). -

Without restriction of generality we shall assume M = N, since all

relevant constructions depend on quantities defined on N.
Even if Tab was introduced as a differentiable tensor field it will prove

to be useful for the following to work with a more general class of mass
tensors, with tensor distributions (cf. Appendix 1) :

Suppose we have a 4-form ~ on M which vanishes nowhere. It is well

known that then the map Tab provides an

inclusion of the space of locally integrable (o)-tensor fields into the space
(~~2])’ of tensor distributions. The matter tensor will from now on be
considered as a tensor distribution in (~?2])’. As the support is contained
in the closed set W, we may extend the range of definition of Tab to the

larger test field space ~~2] (cf. (A1.9)). The law of motion (3.1) is now

understood to hold in the sense of distributions, i. e.

Finally we impose a further restriction on the mass distribution :
We want that it makes sense " to speak about a mass distribution at a given

Annales de l’Institut Henri Poincaré - Physique theorique ’



297DIXON’S DESCRIPTION OF EXTENTED BODIES

time. Clearly, for a general distribution in (~~])’ there is no well behaved
« restriction to a hyper surface E(.s) » ; hence momentum, angular momen-
tum, etc., defined along the lines of Dixon’s approach, would become
tensor distributions along l. In order to avoid this unattractive possibility
(and a lot of other complications) we will focus our attention to distri-
butions in (~~])’ which can be restricted w. r. t. in the sense of [1 ] :

3 . 2. DEFINITION. L E (~~2])’ is restrictable (with respect to 

iff for any there exists a smooth function l ---+ [R, ~ t-~ i 
such that the following conditions are satisfied : 

~

R1 For any E ,

(Note that the 1. h. s. is well defined !).

i. e. for an m~N o? ( 2014 ) 
m 

g oes to zero, uniformly on any com p act
B /
subset of real line).

3 . 3. REMARK. 2014 Clearly, for Le(~)~ ~p E ~~2~, T~ (if it exists)
is uniquely determined by (Rl). ~)

3.4. EXAMPLES. 2014 f) The « monopole » distribution

t/

is restrictable.

ff) If L is defined by the smooth tensor field T (see above), then L is
restrictable.

We quote a few results on restrictable distributions (the easy proofs
can be found in [16 ]) :

3 . 5. PROPOSITION . 2014 Let be restrictable.

f) For an y m~N0, S~R, 03C6~(d ds) 
m 

is a distribution with

compact support contained in n supp (L) (Hence it can be extended
to a distribution on ~~2~).

Vol. 40, n° 3-1984.



298 R. SCHATTNER AND G. LAWITZKY

iii) For any 03C6 E F0[2], s has compact support, hence

Let us summarize our requirements on the mass tensor Tab:

(M3) Tab is restrictable w. r. t. 

A tensor distribution which obeys (M1), (M2), (M3) is called « admissible ».

3.6. REMARK. Admissible mass tensors will be well suited for all

questions arising from the law of motion (3.1), especially for the problem
of finding reduced moments in the sense of Dixon and of establishing
equivalence between various descriptions of the body. On the other hand,
in general, tensors of this type will not be useful as sources in field equations
for the gravitational field.

4. THE SPLITTING OF THE TEST FIELD SPACE

In this section we show that for each symmetric there exists in a

neighbourhood of a point z a unique symmetric 03B2ab such that

x) = 0 and + for some 1-form ~,a .

Furthermore we give conditions that make 03BBa unique and find explicit
expressions for 03B2ab and 03BBa in terms of 

Finally we introduce a related splitting which does not refer to a point
z E M but refers to the pair (l, uk) defined in the previous section. (These
splittings have been introduced by Dixon [6 ] , [8 ]).

4.1. PROPOSITION. 2014 Let zEM, normal neignbourhood
of z the following two statements are equivalent :

Annales de l’Institut Henri Poincare - Physique theorique j



299DIXON’S DESCRIPTION OF EXTENTED BODIES

and

Proof - i ) ~ ii): Differentiation of (4.1) yields

Transvection with 6b and 03C3c respectively yields using = 6a (4.2).
Passing to the coincidence limit in (4.4) we obtain (4.3).

ii) ~ i) : Suppose (4. 2) and (4. 3) hold. Let x(u) be an affinely parame-
trized geodesic with ~-(0) = z. We multiply (4.2) with 6a. This gives

Using

we get

This may be integrated inferring the initial condition from (4 . 3) :

or

(4. 9) implies

We insert (4.10) into (4.2) and get

hence along x(u)) :

or

Using (4 . 3) we see that the singular initial value problem (4.13), (4 . 3) admits
the unique regular solution

4. 2. LEMMA, Let and Then in a normal neighbourhood
of z

is equivalent with the inhomogeneous adjoint Jacobi equation [77] ]

along all geodesics x(u) emanating from z = x(o) together with the initial
condition

Vol. 40, n° 3-1984.



300 R. SCHATTNER AND G. LAWITZKY

Proof 2014 This is an easy consequence of prop. 4.1 and of the symmetries
of the Riemann tensor.

Trivially the following statement holds :

4 . 3. LEMMA. Let and be such that == (4.18)
Then

is equivalent with

Now we are ready to prove existence and uniqueness for our splitting
problem :

4 . 4. PROPOSITION. 2014 Given ~p E ~f2] and z E M there is (locally) a unique
choice of ~e~ such that (4.15) and (4.19) hold : We have the splitting

with

Proof. 2014 In view of Lemma (4. 2), (4. 3), (4.15) and (4.19) are equivalent
with (4.16), (4.20), (4.21). But (4.16) can be integrated along all geodesics
through z using the initial conditions (4.20), (4.21), i. e.

The (unique) 1-form ~,a obtained in such a way satisfies (4.15) and (4.19).
Using Appendix 2 we can give an explicit representation of ~:

4.5. PROPOSITION. ~,Q as defined in Prop. 4.4 is given (locally) by

where yx(u) is defined by

In flat space we can sharpen our results

4.6. PROPOSITION. 2014 Let (Xk) be standard coordinates on Let 
be a symmetric C2-tensor field on f~4. Then the following three statements
are equivalent :

ii) There exists a tensor field with symmetry [2, 2] ] such that

de Henri Poincaré - Physique theorique



301DIXON’S DESCRIPTION OF EXTENDED BODIES

Proof 2014 f) =&#x3E; iii): Prop. 4.1.
ii) =&#x3E; i) : Obvious from the symmetry properties of H.
i) =&#x3E; ii) : We differentiate (4. 26). This yields

Antisymmetrization gives

Differentiating again and multiplying with Xm gives

Now, let us put

Then

Substitution of X by uX in (4.29) gives, when inserted in (4.34)

whence

Differentiating (4. 35) we find

Finally we substitute X -~ uX in (4 . 31), insert the result in (4 . 37) and find :

(Antisymmetrization is taken over (k, m), (l, n) separately). Now we put
(4.33), (4.36), (4.38) into Taylor’s formula

and o find = == with

4.7. PROPOSITION. 2014 Let 03C8 be a symmetric C2-tensor field on 1R4, let

be the uniquely determinated splitting such that

Vol. 40, n° 3-1984.



302 R. SCHATTNER AND G. LAWITZKY

We have the explicit representations

Proof. 2014 (4.44), (4.45) follow from (4.24). Bkl satisfies (4.42), hence it
has the form (4.27). Explicit evaluation of (4.40) gives (4.46).

Clearly Prop. 4.7. provides a splitting of (T~2~, T)l : We only have to
replace ak in the formulae above by V~.

4. 8. PROPOSITION. 2014 For T)l there exists a unique T)l
such that (in a natural coordinate system (x, X) on for all ~e [R:

and, for all X E 

Prop. 4 . 8. allows to define two maps from (T~2~, T~l into itself :

From the explicit expressions in Prop. 4.7. one can easily read off the
following properties of the decomposition op’s p, q :

4. 9. PROPOSITION. 2014 p and q are continuous linear maps from (T~2~, T~l
into itself with the following properties :

Let be closed and starshaped w. r. t. 0 E Furthermore,
let 03C8 E (T0[2], T) be such that

Annales. de Henri Poincare - Physique theorique .
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Then

In the subsequent sections we want to apply splitting theorems within
our framework for describing bodies. Clearly we search for a characteriza-
tion of the state of the system at any time (together with « evaluation equa-
tions ») rather than an overall description of the system. Technically,
while the latter procedure would involve a global splitting with respect
to a fixed point z (which clearly causes difficulties), the former needs only
local (in time) decompositions with respect to z(s) for all s E !R. Therefore
we must consider what happens if we move the reference point z along l.

4.10. PROPOSITION. 2014 For any the decomposition according
to prop. 4 . 4. defines fields and ~3ab E ~0,’~2~ in a neighbourhood
of the diagonal set of M x M :

Proof. 2014 In the neighbourhood of any point z E M one gets a decompo-
sition (4.60), (4.61). The differentiability of with respect to z is a
consequence of the smooth dependence of solutions of ordinary diffe- .

rential equations on the data and the coefficients.

4 . 11. LEMMA.

obeys the equation

(locally) along any affinely parametrized geodesic with x(o) = z(s).

Proof 2014 Differentiation of

with respect to s gives

For fixed s, we trivially have

hence Lemma 4.2 implies

along all geodesics x(u) emanating from x(o) = z(s).
According to Prop. 4.1. we have

Vol. 40, n° 3-1984.
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Differentiating with respect to s we get

Using x(u)) = uxa(u) and substituting (4 . 69) into (4 . 67) we find (4 . 63).

4.12. LEMMA . The initial conditions to determine from (4 . 63) are

where the limit ~ -~ z is taken after the differentiation has been performed,
i. e. is the coincidence limit of 

Proof 2014 We differentiate (4.20). This yields

along 1. Using (4 . 21 ) we get (4 . 70).
Differentiation of (4 . 21 ) gives

It is a consequence of (4.20) that, at z(s),

or

In virtue of this property we get in the limit u ~ 0 from (4 .16) :

We insert (4.76) into (4.73) and get

which is(4.71). ). 

4.13. LEMMA. 2014 Let 03C8a be the solution of (4 . 63) with zero initial data. Then

where the index a refers to the point x, k to z(s), and p, q, r to

The solution of (4.63) with initial data (4.70), (4.71) is then

4.14. REMARK . The singularity at M == 0 in the integral (4 . 78) is
only apparent : This may be seen as follows : Let B i. e.

Annales de Henri Poincare - Physique ’ theorique ’



305DIXON’S DESCRIPTION OF EXTENDED BODIES

Then = 0 implies XkBkl = 0 in a starshaped neighbourhood of

Hence, according to Prop. 4.. 6., Bkl=XmXnHkmlrp and 
with h := H. Therefore all terms in contain at least two

times 6S(z(s), x(u)) which is proportional to u.

4.15. DEFINITION. 2014 For E ~~2~, let be defined as in Prop. 4.10.

We define

Clearly a [~ ], ..., b ] are defined on the open subset U ç l x M, and
are elements of = 1 or [2 ] .
(4. 78) defines a bitensor

for any 03B2ab E ~0,00[2](U) with satisfies

4.16. DEFINITION AND LEMMA. 2014 (4.86) defines a closed linear sub-
space ~ of ~0,~~2~(U).

4.17. 
s = 1 or [2 ], is linear and continuous. Furthermore

ii) n is a continuous linear ~8:r(U).

4.18. DEFINITION. 2014 Let

let

(This is well-defined because E(.s) ~ Us, hence (t(x), x) E U). Furthermore,

4.19. LEMMA. i) ~ is a linear map ~~2] ~ s = 1 or [2 ].
ii) Let S be a closed set such that S n E(s) is starshaped with respect

Vol. 40, n° 3-1984.
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to z(s) for all s E f~. Suppose ~p E ~~2] with supp n S = 0. Then
== 0.

Proof. 2014 f) is obvious from the explicit representations (cf. (4 . 24), (4,80)).
ii) Let y(z, x) denote the geodesic segment joining z and x. Then it

follows that X [~p ](x) = 0 whenever in a neighbourhood of x).
Now let x~S. Then, by hypothesis, x) ~ Sand

4 . 20. PROPOSITION. - Let There exists a such that

for all In fact, 1 is a continuous linear map
~ ~2~(F) ~ and, a fortiori, a continuous linear map 
(s = 1 or [2 ]).

Proof 2014 From Lemma 4.19. it is obvious that, for given F, the following
set F is a possible candidate :

i. e. F consists of all geodesic rays emerging from points x E F and passing
through z(t(x)) if continued beyond x.
F is closed, and we have to prove that F n W is compact :
Since n W is starshaped with respect to the ray through

and x does not intersect W beyond x if x ~ W. Therefore

FnW is compact, hence FnWç U E(s)nW for some (4 . 97)

Therefore

Hence F n W, a closed subset of the compact set U n W, is itself
S1SS2

compact. 2 maps ~~2~(F) into linearly. Continuity can be seen
as follows :
Let D E (~. We define

i. e. D consists of all geodesic segments with one - endpoint in D n F and o
the other one on 1 which are contained in some . E(s). D n F is compact

Annales de l’Institut Henri Poincare - Physique theorique
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which implies that D is also compact. Now it is an immediate consequence
of the explicit representations of I that for all 03C6~F0[2](F):

where C is a positive constant independent of ~p.

4 . 21. PROPOSITION. 2014 f) n is a continuous linear Sr such
that for all 03B2~H satisfying 03B2 v E F0[2](F), e [03B2] e where F is defined
as in (4.95).

ii) If S is closed and such that S n E(s) is star shaped with respect to z(s)
for all s, then S n supp (~i ~ v) = 0 implies supp ( e [/~ ]) n S = 0.

iii) Let g : l x M ~ [? be constant on { x E(s2) for all s1s2
i. e. there exists a g: l x !~ -~ IR such that g(z(s), x) = g(z(s), t(x)). For ,

any ~3 E ~f also ~ := g ~ j8 E Jf, and one has :

Proof. - i), ii) can be shown as above.

then (4 . 78) immediately gives (4.101) because g(z, t( y)) = g(z, t(x)). The
Leibnitz rule yields

The second term on the r. h. s. vanishes by assumption, the third and fourth 
’

term are zero because 

iv) can be shown similarly.

4 . 22. LEMMA.

Then

hence (cf. Prop. 4.17)

Proof 2014 For fixed s, a [ - ] is the solution of the equation
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along the geodesic with = z(s), = ~ with the initial data

Using the definition of the Riemann tensor (4.108) is transformed into

hence

which is (4.105).

5. DEFINITION AND BASIC PROPERTIES
OF THE SKELETON.

DIXON’S INTEGRAL LAWS OF MOTION

In this section we define momentum, angular momentum and skeleton
of an admissible distribution T and investigate some of their properties.

5.1. DEFINITION. 2014 Let T be an admissible distribution. Then we define

i) the momentum of T (w. r. t. (l, ,

ii) the angular momentum of T (w. r. t. (1, uk))

5.2. LEMMA. Pk, Sk~ are smooth vector (bivector) fields along l.

Proof T is restrictable. -

Let then are smooth tensor fields. Since

T is restrictable and ~p H 
í Tcp is a distribution with compact support,

the map J1:(8)

is well-defined and smooth. In fact, ts has the following properties :

5 . 3. LEMMA. i) For any S E f~,
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ii) For any s there exists a distribution ts on ~ z(s) ~ x with

supp (ts) c { z(s)} x (W n E(5)) such that for all /3 E ~f _

Proof - i) Trivially /3 H ~[~] ] is linear. Furthermore /3 H /3 0 v,

03B2 ~ dt ~ e[03B2 ] are continuous (cf. Prop. 4 . 21). Since 03C6 ~ 03A3(s)T03C6 is a

distribution (Prop. 3. 5), /3 H ts[03B2] ] is in Jf’.

Prop. 3 . 5. implies the vanishing of ts for all 03B2 E H such that 03B2 v = 0
and neighbourhood of E(s) n W. But such /3’s can be cons-
tructed as follows : Choose such that /3 = 0 in a neighbourhood
of { z(s) } x (W n E(s)). The set S := W n E(s) is closed and starshaped
w. r. t. z(s), /3 0 v vanishes in a neighbourhood of S, hence supp ( e [/3]) n S = 0.
(Prop. 4 . 21.).

ii) Fermi-coordinates (t, x°‘), a = 1, 2, 3, on M according to section 3
define a coordinate system (s ; t, x°‘) on l x M. For any s, /3 H is a
distribution with compact support on the 3-surface (s ; s, x°‘) which has
the following property :

If g : l x M -~ IR is smooth,

then

(This is a consequence of the admissibility of T of Prop. 4 . 21 (iii). But
this implies (ii).

0, then ~3n ~ v ~ 0 and 0. (Prop. 4 . 21).
Hence (R2) implies (iii).

Let (s, xm) be a natural coordinate system on and let (T~2], T)l
denote the space of smooth symmmetric (~)-tensor fields over 7r along l

(together with the ~-topology with respect to the derivatives 
If E (TP2]’ T)l, then p [~r satisfies

Hence ~ [~ ] defines a field by

to which we can apply ts.

5.4. DEFINITION. 2014 Let, for given ~r E (T~2~, T)l, ~3 be as in (5 . 9). For
any s e ~ we define the skeleton of T (w. r. t. (l, uk)) by
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5.5. PROPOSITION. 2014 f) For any there exists a distribution 
on such that for all 03C8 E (T0[2], T)l

In the following, we will use the symbol for both distributions.
is a distribution of compact support

ii) For any p~ ( is a smooth function.

iii) 0. Then

Proof 2014 The statements follow from the properties of ts (Lemma 5.3)
and of p (Prop. 4 . 9.). (5.11) can be seen as follows :
From (5. 5) we have

But is completely (and continuously) determined by 

5.6. PROPOSITION.

Proof. - Let Q E T1, Then  V~ Q ) =  $~n &#x3E;. But
from Prop. 4 . 9. q [$*Q] = $*S2 and therefore p[$*03A9] = 0, whence

5.7. PROPOSITION.

H.~,) - 0

for all H with symmetry [2, 2 ]. But

where

Obviously 0, whence (Prop. 4.9)

We define

But j8 E Jf as a consequence of the symmetries of H.
For all xEM:
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and, from Prop. 4 . 21. (iv):

Hence (cf. (5 . 21 ))

5.8. LEMMA. - Let smooth 1-parameter family of smooth
1-form fields. Furthermore let 03BB v, (~s03BB) v E ($x03BB) v E F0[2]. Then

Proof. - From Prop. 3.5.(u) we find

Prop. 3.5. (ii), imply (5.26).

5 . 9. LEMMA . Let ~p E ~j. Then

Proof - From (4. 89)

We infer from Prop. 4.5., Lemma 4.13 and Prop. 4.21 that

satisfies the hypotheses of the proceeding Lemma. Hence

5.10. LEMMA. - Let 03C6 ~ F0[2]. Then

Proof 2014 We insert (4.91) into (5.28) and find (using the restrictability
of T and Def. 5 .1 )

Use of (5.3) yields (5.31).
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5.11. LEMMA. - Let ~p E ~. Then

where, for A E {Tf, T)M, G ~ A is defined by 
Proof: 2014 Using the properties Ha k, 6lb (cf. [17]) and the definition of G

(Appendix 2), one finds

For a given ~,a define

From (5.34) one deduces

Now we put

Addosubtraction of exp* ~p on the r. h. s. of (5 . 36) yields, using Prop. 4.17.,

But ~(P = 0 implies

Hence, from (4.55),

Furthermore, from

Application ofp to (5 . 38) and use of (5 . 40), (5 . 41) yield (5 . 33). Combining
the results of the previous Lemmata 5.10 and 5.11 we now deduce :

Prop. 5 .12. tells us that ( can be calculated from the knowledge
of (~ the momentum P~ the angular momentum and the skeleton 
As a consequence of a local law of motion ~ . T = 0, P and S satisfy

evolution equations along l, Dixon’s integral laws of motion. We use the
following strategy to derive these equations (cf. Dixon [6], [8 ]) :

In (5.42) we let ~p be of the special form

As in Lemma 4 . 22 we define a two-point-tensor field ça:=ça [(0 x M)

by
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We have

whence (using Prop. 5.5. (i))

where we have introduced the abbreviations Fk, Lk~.

5.13. DEFINITION. 2014 We define the gravitational f ’orce F and torque L
relative to (1, uk) acting on the body whose skeleton is T, by

Clearly Fk and Lkl depend smoothly on s.

5 .14. THEOREM. 2014 Let P, S, T, F, L be as defined above. Then as a conse-

quence of the local law of motion ~ . T = 0, P, S have to satisfy Dixon’s
integral laws of motion :

Proof 2014 Let CD, A, B, ~ be as defined above. The local law of motion and
Prop. 5 .12.. imply

We try to evaluate all items in (5 . 51) in terms of A and B :
From (4.53) and the definition of T we know

Therefore, by 5 .11, . 4 . 22 and (5 . 44)

We have

hence

Furthermore Bab := satisfies

and therefore
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Using (5.54) and (5.57) we find

We insert (5.53), (5.55) and (5.58) into (5.51) and find

(Note that A, B have compact support !). Since A, B are arbitrary, (5 . 59)
implies (5.49) and (5.50).

6. REDUCED MOMENTS

In the preceeding sections (contained in Paper I) we have shown that
an admissible mass tensor distribution T allows one to define a vector
field Pk(s) and a bivector field along and furthermore a family 
of distributions on the spaces (T~, which have the following properties :
(M1) Skl(s) depend smoothly on s.
(M2) has compact support in the hyperplane ortho-

gonal to in fact 
’

(M7) Define a smooth vector field F~) :=  T;:), and a
smooth bivector field Lkl(s) ==  1:(~), along l. 

&#x3E;

Then Dixon’s integral laws of motion hold :

In fact, T is completely determined by P~ T : For 
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or equivalently (using (5.38) and (M3))

Conversely, we now assume that we have a set (P, S, T) which obeys (Ml-7).
In the subsequent sections we will show that such a triple then determines
an admissible T. -

We start with the definition of reduced moments and an investigation
of their properties. Apart from Proposition 6.16 everything in this section
refers to a fixed tangent space We therefore omit the argument z(s)
whenever there is no risk of confusion.

6 .1. DEFINITION. 2014 The extended skeleton Tex is defined by

where ~ denotes the distribution given by ~( f ) = /(0) for all smooth
functions /. Obviously Tex has the same support properties as T.

6.2. LEMMA. -

(Hence, by (6.1a), T is completely determined by the extended skeleton).

Proof - (6. 3) follows immediately from G(O) = 0 (see Appendix 2,
Paper I)

Let us choose a basis Vk), a = 1, 2, 3, in the tangent space 
such that ukVk - 1, ukeka = 0. This defines a projection operator

Any vector Xk E has a representation X k == Vk + Xk where

In the dual space we have the dual basis (ek, hence for any Ki a repre-
sentation Ki = ui + K ~ (Ku = KiVi, Ki = 

Clearly such a choice provides measures DX on and DK on its

dual space. Furthermore using (M2) we now can define distributions
~ ~ ~ Tex, f ~ for k, = 1, ..., 4 on 9 (Mz(s»), the space of C-valued
smooth functions on 
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6.3. DEFINITION. 2014 The moment generating function Ik~ is defined to
be the Fourier transform of i. e.

6.4. LEMMA. 2014 Î is an entire analytic function which increases for real
K -+ 00 (i. e. (K~ + EK~)~ -~ (0) not faster than a polynomial.

Proof. - (M2) and the theorem of Paley-Wiener.

6.5. DEFINITION. - The reduced moments of the first kind ( the 
are defined by

6 . 6. LEMMA. -

which implies (6.8). Similarly one proves (6.9).

6.7. LEMMA. -

Proof (6.12) can be seen directly from (6.10). (M3) implies

6 . 8. DEFINITION. 2014 The reduced moments of the second kind (« the J’s")
are defined by

where antisymmetrization is taken separately over (i, j) and (k, l).

6 . 9. LEMMA. -
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6.10. COROLLARY. 2014 For v ~ 2, the J’s and I’s are equivalent :

6 .11. LEMMA.

Proof.

from (M4).
Using the above results one can establish further symmetry properties
of the moments :

6.12. LEMMA . .... "

6 . 13. LEMMA.

6.14. LEMMA . The above symmetry and orthogonality properties of
the (reduced) moments correspond to the following structure of the moment
generating function : 

’

Proof 2014 In virtue of Lemma 6 . 4 and Definition 6 . 5 I kL has the following
power series expansion around 0:

Inserting Kj = Kj + and using the symmetry and orthogonality
properties of the I’s we find the decomposition
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where

From the definition of I kl we deduce that

Applying (M4) we obtain

i. e. does not depend on Ku.
Differentiation of (6 . 33) yields (~ :== 

Applying (6.38) and using the independence of of Ku we get

In (6.40) a* may be replaced by 3~. But now (6.40) and Prop. 4.7 imply

where cm is given by

here am and bkm = are arbitrary constants. Furthermore 
We choose

From Lemma 6.13 we find

and

Let

By (6.45), (6.46) Dk~ satisfies

and

Annales de l’Institut Henri Poincaré - Physique ’ theorique ’



319DIXON’S DESCRIPTION OF EXTENDED BODIES

In virtue of (6.42) and (6.46) we find from (6.41)

Since and D do not depend on Ku transvection of (6 . 50) with um gives :

The first item in (6.51) vanishes as a consequence of (6 . 27) and (6 . 35).
Hence D is constant, in fact

Hence, by (6.47), there exists a scalar function c such that

From (6.46)
hence c does not depend on Ku .

We plug (6.52) into (6.50). This yields

Again by Prop. 4.7

with

where em and are constants. We get

If we choose the free constant

we find = 0.

6.15. COROLLARY. - Akl(K), Bm(K), C(K) and their derivatives are

polynomially bounded as K ~ oo .

Proof. 2014 The functions ~m1..mv*kl(K) = kl, ( - ... 

are polynomially bounded as K ~ oo. But in our coordinates (K == 1, 2, 3)
we have

and

and Bm, C are constructed from these quantities by integration (cf. (6.43),
(6.53), (6.57)).
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6.16. PROPOSITION. 2014 The distributions

have the following properties :
i) The families = 0, 1, 2 have the properties (M2), (M5), (M6).

ii) There exist distributions on such that for all 

~ = 0. 1,2

(i. e. the are the extensions of the to 

Proof - i) is obvious from the definition and the properties of Tex.
Let (without loss of generality) 03A8 have compact support, let qí denote its
Fourier transform. Using the Parseval identity one finds

From Lemma 6.14, Corollary 6.15 and the standard formulae for Fourier
transforms (shuffling derivatives) one deduces and 

7. RECONSTRUCTION OF A DISTRIBUTION
FROM A SKELETON

Now we are ready to prove a « reconstruction theorem » : We will
show that a set (P, S, T) which obeys (M 1 ), ... , (M7) determines an admis-
sible mass distribution by (6.1).

7.1. THEOREM . Let = z(s), uk, W be as in Sect. 3, P a smooth vector
field along l, S a smooth bivector field along l and, for any s, a distri-

bution on (T 2~, such that (M 1) - (M7) are satisfied. Then equation (6 .1)
defines an admissible mass tensor distribution T.

Remark. - P is the momentum, S the angular momentum and 
the skeleton of T in the sense of Def. 5 .1 and 5.4. This can be shown using
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techniques similar to those applied by Dixon [6] in his « Uniqueness »
proof

or equivalently

(the last line follows from the definition of Tex and Remark 4.14) is well
defined and linear.

i) The support of the linear functional (7 . 2) is contained in W : Let
03C6 E !Ør2] with supp 03C6 n W = 0. We have to show ( T, = 0. Obviously
l n supp ~p = 0 whence the first two terms in (7.2) vanish. Furthermore,
for any s E IR, (well defined on U,!) is a distribution which
by hypothesis has compact support contained in From the
explicit expressions for cf. (4. 84), (4.24) and our geometrical assumptions
in Sect. 3 one can read off c[~](~’) = 0 in a neighbourhood of E(s) n W.
Hence, for all 5:

ii) The map ~p )-~ ( is continuous :

Let 03C6n 0. We have to show 0 (cf. Appendix 1 ). By
assumption, all 03C6n have their support in a fixed compact set K where

converges uniformly to zero for any a E 
We have s 1  t(K)  S2 for suitable s2 . (7 . 4)

Hence

and, by arguments similar to those in (i), if 5  Sl 

Therefore, the maps

have their support contained in the compact set s2 ] ~ !R. Prop. 4.17
implies

whence
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Using the support properties of (M2), our assumptions in Section 3
and (M5, 6) we see that all ~pn are smooth, and that tends to zero,
uniformly on s2 ].

Hence

iii) V T = 0 : The proof consists in reading the proof of Theorem 5 .14
the other way round : Let co, A, B be defined as in Section 5. Then by (M7)

iv) T is restrict able :
Let ~p E ~ ~ 2 ~, f E Then

We observe

where we have used

Next we consider

From the explicit representation (cf. (4.24), (4.83)) we have with
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Define

Obviously (cf. Prop. 4 .17) [’ ], p = 0, 1, 2, are continuous and linear
maps ~~2](M) -~ ~8,’[~](U). For xeE(5) the integration in (7.15) occurs
only in the hypersurface E(~); therefore, if x E ~(s), we have

Similar representations hold for the derivatives of c [~ ’ ( f ~ ~)] if x E E(s).
This implies the existence of continuous and linear maps 9~~:
~~2~(M) ~ (T~2~, T)l, p = 0, ... , q + 2, such that for 

Now, by Prop. 6.16.

The functions s ~  ~~q~p~ ]) are smooth and have compact
support if (Clearly = 0 if ~p = 0 in Us).
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Hence, using (7.12), (7.13) and partial integration, we find

The bracket { ... } defines a C~-function Due to the properties
E(s)

of ~~q~p~ and of ~pn ~ 0 implies í T ~pn ~ 0. Hence T is restrictable.E(S)
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APPENDIX 1

Test field spaces and distributions

For a manifold M let Jf denote the family of compact subsets, ~ the family of closed
subsets, and, for a given closed W ~ the family

Define a family

For Tel Irs(T) is the locally convex vectorspace of all C~-tensor fields of type (r s) with
support in T together with the family of semi norms (PD,m), where, for t E ~s(T) :

(e is a Riemannian metric on

Obviously, Grs(.), Krs(.) are well-known spaces ~r2(.) resp. Drs(.), instead of gns(.) we write
~(’). All these spaces are Frechet-spaces [20 ].

Let Ii e { Jf, Ti E i = 1, 2 ; a linear map A : I1(T1) ~ :I2(T2) is continuous
iff for D2 E 2;~, m2 E No there exist a D1 E ~1, a ml E No and a c &#x3E; 0 such that for all

is a vector space ; we endow ~ with the inductive limit topology [2 ].

If V is a locally convex space, a linear map A: ~ -~ V is continuous iff its restriction
to each :!~(T) is continuous.
One has continuous inclusions ~ ~. ~~ ~ $~.
A sequence (tj in :!~ is said to converge in the sense of X to 0 (~ ~ 0) iff

i) there is a fixed T E :! such that t" E :!~(T) for all n ;

ii) on each D E ~1, converges uniformly to zero for all a E 
(3~)’ denotes the topological dual of ~, i. e. the space of all (real) continuous linear functions
distributions) on ~.
For a linear functional the following three statements are equivalent:

f) L is continuous

One has inclusions (~y c~ (~ s)’ c., (~~ (continuous w. r. t. the weak topologies).
It is well-known [20 ) that

(~:)’ = { L E (~~ j I L has compact support, i. e. supp (L) E ~ == Jf } (AI.8)

in a similar way one can characterize the space (~;)’:

This allows us to apply the whole well-known theory of distributions also to elements
of (~)’. On various spaces of two-point-tensor fields and tensor field over 7r we have topo-
logical structures of the ~-type. As those spaces play only an auxiliary role and their pro-
perties are quite straight-forward, we are not going to formalize them.
(We will use symbols like etc. without further explanation).
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APPENDIX 2

Some special bitensor fields

Let (M, V) be an affine manifold. In a neighbourhood of the diagonal set of M x M
one can define the world vector fields 6k, 6a (and their derivatives), the Jacobi propagators
Kak, Hak and the Jacobi co-propagators kak, hak (see [77] ] for details). One has

Ha k is the differential of expz,

In a normal neighbourhood of z, the inhomogeneous adjoint Jacobi equation (cf. [17])

has the solution

where the index q refers to the point

Furthermore we introduce a bitensor

In the coincidence limit,
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