Comparison of exact and approximate causal solutions of a model curved-space wave equation
Annales de l'I.H.P. Physique théorique, Tome 41 (1984) no. 4, pp. 385-398.
@article{AIHPA_1984__41_4_385_0,
     author = {Anderson, James L. and Heyl, William J.},
     title = {Comparison of exact and approximate causal solutions of a model curved-space wave equation},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {385--398},
     publisher = {Gauthier-Villars},
     volume = {41},
     number = {4},
     year = {1984},
     mrnumber = {777913},
     zbl = {0632.35032},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1984__41_4_385_0/}
}
TY  - JOUR
AU  - Anderson, James L.
AU  - Heyl, William J.
TI  - Comparison of exact and approximate causal solutions of a model curved-space wave equation
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1984
SP  - 385
EP  - 398
VL  - 41
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1984__41_4_385_0/
LA  - en
ID  - AIHPA_1984__41_4_385_0
ER  - 
%0 Journal Article
%A Anderson, James L.
%A Heyl, William J.
%T Comparison of exact and approximate causal solutions of a model curved-space wave equation
%J Annales de l'I.H.P. Physique théorique
%D 1984
%P 385-398
%V 41
%N 4
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1984__41_4_385_0/
%G en
%F AIHPA_1984__41_4_385_0
Anderson, James L.; Heyl, William J. Comparison of exact and approximate causal solutions of a model curved-space wave equation. Annales de l'I.H.P. Physique théorique, Tome 41 (1984) no. 4, pp. 385-398. http://archive.numdam.org/item/AIHPA_1984__41_4_385_0/

[1] J.L. Anderson and L.S. Kegeles, Gen. Rel. Grav., t. 14,1982, p. 781. | MR

[2] W.L. Burke, J. Math. Phys., t. 12, 1971, p. 431 ; J. Ehlers, In Proceedings of the International School of General Relativistic Effects in Physics and Astrophysics: Experiments and Theory, Max Planck Institute, Munich, West Germany, 1977.

[3] J.L. Anderson, Private communication.

[4] J.M. Bird and W.G. Dixon, Ann. of Phys., t. 94, 1975, p. 320 ; J.L. Anderson, Private communication. | MR | Zbl

[5] V. Fock, The Theory of Space, Time and Gravitation, 2nd ed., Pergamon Press, New York, 1964, p. 365. | Zbl

[6] J.L. Anderson and L.S. Kegeles, op. cit., p. 782.

[7] J.L. Anderson and L.S. Kegeles, op. cit., p. 784.

[8] M. Abramowitz and I.A. Stegun, eds. Handbook of Mathematical Functions, Dover, New York, 1965, p. 231.

[9] F.W. Byron and R.W. Fuller. Mathematics of Classical and Quantum Physics, Vol. 2, 1970, Addison-Wesley Publishing Co., Reading, Mass. | Zbl

[10] M. Abramowitz and I.A. Stegun, op. cit., p. 505.

[11] Ibid., p. 508.

[12] Ibid., p. 256.

[13] A. Erdelyi, ed. Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953, p. 280. | Zbl

[14] M. Abramowitz and I.A. Stegun, op. cit., p. 504.

[15] V. Fock, op. cit., p. 368.

[16] V.I. Smirnov, A Course of Higher Mathematics, Vol. IV, Pergamon Press, 1964, p. 441.

[17] Ibid., p. 136.

[18] M. Abramowitz and I.A. Stegun, op. cit., p. 505.