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ABSTRACT. 2014 The formalism of the extended thermodynamics is applied
to a relativistic thermoelectric fluid. Two new terms appear in the genera-
lised Gibbs equation. Their physical meaning is studied by means of the
analysis of the fluctuations of the dissipative fluxes. The constitutive equa-
tions as well as the fluctuation-dissipation theorem are obtained.

RESUME. - On applique Ie formalisme d’une thermodynamique gene-
ralisee (extended thermodynamics) a un fluide thermoelectrique relativiste.
Nous soulignons la presence de deux nouveaux termes dans 1’equation
de Gibbs generalisee, dont la signification physique est mise en evidence
a 1’aide de la theorie des fluctuations des fluides dissipatifs. On deduit aussi
Ie theoreme de fluctuation-dissipation et les equations constitutives du
fluide.

1 INTRODUCTION

For many years the role played by the relaxation proper times in the
description of dissipative phenomena has not been properly taken into
account. Recently however causality requirements have thrown them
into an outstanding level in classical [7] as well as in relativistic [2] ] [3]
formulations of these phenomena. Usually the mentioned proper times
are introduced into the theory through a non-equilibrium entropy function,
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whose physical meaning in some specific situations has been explored
by two of us [4] ] [5 ].

In this note we analyse the simultaneous process of heat and electric
conduction in a relativistic inviscid fluid as well as the fluctuations of both
fluxes around equilibrium. In our study the relaxation proper times of the
process under consideration play a main role. Let us imagine for instance
a thermoelectric fluid submitted to a temperature gradient ; consequently
a heat and an electric flux will appear. If the temperature difference res-
ponsible for the temperature gradient is suddenly removed, both fiuxes
will not vanish immediately but after a finite time. This reflection suggests
that the relaxation proper times must enter on their own right in the ther-
modynamical description of the involved processes.
We start from the relativistic version of extended irreversible thermo-

dynamics [3 ]. The ensuing constitutive equations reduce to the earlier
obtained by us in the limits of non heat [6] and non electric [7] conducting
fluids respectively. Likewise in both limits the second moments for the
fluctuations of the dissipative fluxes go into the expressions derived in a
previous paper [8 ].
The outline of this note is as it follows. In Section 2 we present the phe-

nomenological description of the relativistic thermoelectric fluid including
besides a relation holding between the different relaxation proper times.
In Section 3 we analyse the equilibrium fluctuations of dissipative fluxes.
Lastly, Section 4 is devoted to some final remarks.
As it is customary 0"w denotes the spatial projector + MV, with ~

the metric tensor of signature (2014,+,+,+) and u"~ the world velocity
normalized according to 1. Derivation along u"~ will be indicated
by means of en upper dot.

2. RELATIVISTIC DESCRIPTION

OF THERMOELECTRIC FLUIDS

Let us assume a relativistic inviscid fluid capable of heat and electric
conduction, submitted to an external electromagnetic field and with
a momentum-energy tensor given by

where q"~ stands for the heat flux and 8 for the internal specific energy.
The evolution of this latter quantity along the world line is afforded by
the balance equation

v being £ the specific volume ’ (v = 1/p), and ’ 1~ the electric conduction current.
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By virtue of the conservation of the electric charge, this vector obeys to
the relation

z being the specific electric charge, which yields the evolution of this quan-
tity along Moreover Iu shares with q  the well-known geometric pro-
perty = = 0 ; i. e. both vectors are of spatial type. As we will
see, this fact makes easy the mathematical treatment of our problem.

Following the lines of the extended relativistic thermodynamics we
assume that the dissipative quantities enter besides the equilibrium variables
in the non-equilibrium specific entropy function ~ as well as in the entropy
flux 1~). Thus, we postulate on the one hand the generalized entropy
r~ = r~(E, v, z, P) whose Gibbs equation can be written as

and on the other hand, the following expression for the entropy flux vector

These two expressions are the most general that can be constructed up
to second order in the dissipative fluxes for an isotropic fluid. The chemical-
like potential ,ue is defined by means of the equation of state (~h/~z)’ = - e/T,
where an upper prime denotes that all quantities but z are to be kept constant
during the derivation. The coefficients aij as well as the 03B2i (i, j = 1, 2)
are functions of E, v and z ; the former being relaxation parameters which
will be identified later. Comparison of (5) with the classical expressions
enables us to identify /31 and /32 as 1/cT and - ,ue/T respectively. Since ~
must be a perfect differential, the Maxwell relation a12 = a21 is satisfied.
Also, the following set of restrictions exists on the ai~

which arise from the requirement of ~ being maximum at equilibrium state.
By combining the entropy balance equation p~ + 1~ = (7 with (2)-(5)

we set for the entronv nroduction

with = A~X~, = and where the generalized thermo-
dynamical forces are given according to

respectively.
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In order to get the transport equations we expand both conjugate forces
in function of the dissipative ’ fluxes up to second , order in these " variables;
thus one " has

where the coefficients a~~ (i, j = 1, 2) depend on the equilibrium variables
only, and they are also submitted to the restrictions

which proceed from the semipositive definite character of cr, as it may
readily checked by inserting ( 10) and ( 11 ) into (7). From equations (8)-( 11 )
the henomenoloical relations

arise. They form a set of equations giving the evolution of the dissipative
fluxes along the world line of each particle mass element. In this way (13)
and ( 14) together (2) and (3) and the continuity equation = 0
describe the behaviour of the fluid as it evolves along Obviously (13)
and (14) recover respectively the transport equations already deduced in
two previous papers [7] ] [6 ].

It remains to determine the parameters ai~ as well as the This can
be done by especializing ( 13) and ( 14) at the comoving frame 2014 in it one
has A~ = diag (0, 1, 1, 1 ) - then by comparing them, in the stationary
case, with the well-known equations of the classical literature [9 ]. Thus
we get

were and X stand for the heat and the electric conductivity of the fluid
respectively, whereas ~f and () are respectively the differential thermo-
electric power and the heat at uniform temperature per unit electric current.
Once related the a~~ to measurable quantities the ai~ can be obtained if (13)
and ( 14) are compared, again in the comoving frame, and for the non-
stationary case, with the relaxed classical equations. This gives rise to

Here 0) are the relaxation proper times of the involved processes.
The afore-mentioned Maxwell relation, a 12 - a21, together with the
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second and third equations of (16), implies = i21(0 + 
Moreover, if the Onsager relation a12 = a21 is satisfied it follows the

more stringent condition ~2=~21. Actually, its validity can be assured
in the equilibrium only since the Onsager relations may not hold outside
equilibrium [10 ]. At any rate, there exists another restriction on the ii~
which proceeds from the third equation of (6) and it reads

In some circumstances 03C411 and L 22 may be measured, and then the last
inequality would be employed to set upper limits to both 03C412 and i21.

- 3. FLUCTUATIONS

OF THE FLUXES AROUND EQUILIBRIUM

As it is well-known, in a thermoelectric fluid heat fluctuations originate
electric current fluctuations and vice versa. Therefore, in dealing with such
a medium both kind of fluctuations must be considered together. On the
other hand, since both of them are mutually implied, it is reasonable to

expect a non-vanishing correlation amongst them.
Let us assume a thermoelectric fluid at equilibrium. In such a case we

have = 0, and the average values of qu and 1~ vanish, but however
both vectors can fluctuate around that value. In addition the acceleration
must vanish also since otherwise, as a consequence of the inertia of heat,
a heat flux would arise. In order to obtain the probability of a given spon-
taneous fluctuation or we resort to the Einstein-Boltzmann expres-
sion largely used in the literature

where M and kB stand for the mass of the system and the Boltzmann constant
respectively. By combining the generalized Gibbs equation (4) with ( 18)
it follows

and from this last expression the second moments calculated in a given
event point, say x~, read
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oc* being (03B11103B122 - a 12 a21 ) 1 and V the volume of the system. These
three equations are relativistic versions of the fluctuation-dissipation
theorem relating the second moment of fluctuations to the phenomeno-
logical coefficients. Note that in the limit when L12 ~ 0 equations (20)
and (22) reduce to their counterparts deduced in [8] ] and, on the other
hand, All v [~ 51 ] -~ 0. Since, on physical grounds this latter quantity
must be different from zero, relation (21 ) may be regarded as an indirect
corroboration of the presence of the crossed terms v03B112I 03B1q  and v03B121q I
in the generalized Gibbs equation. Notwithstanding, it is convenient to
remind that (4) is only an approximation up to second order in the dissi-
pative fluxes.

Because of the spatial character of and the restrictions

must be satisfied by (19) for a comoving observer. Next we show that (19)
bears such a property. Effectively, for such an observer we have from (20)-(22)
the relations A%[~]=A%[~,~I]=A%[(5I]=0, and as a conse-

quence ( 19) fulfills the above restrictions.
The correlation functions, A~[~....], for the fluctuations between two

very close event points, say x03C3 and x03C3 + which lie on the same world
line can be obtained from (20)-(22) and the evolution equation for the
fluctuations. These later follow from (13) and (14) respectively, and they read

In deducing them we have neglected the fluctuations of the gradients T,v
and since they fluctuate much slower than the heat flux and the
electric current density. After some manipulations the set of equations
becomes ’

with the matrix M of the coefficients Mi~ defined through M = 0152 - 1 . a.
Since the matrix IX - 1 is negative semidefinite and a is positive semidefinite,
M is negative semidefinite.

Integration of the above set of equations between x03C3 and x03C3 + yields

where the Ai~ terms are given by Ai~ = exp s being the arc lenght
measured along the world line. The negative semidefinite character of M
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guarantees the decay of both fluctuations and 

Finally from (20)-(22) and (27) (28) we get

As it can be seen, the second moments in two separated event points can
be expressed, in this simple way, as a linear combination of the correla-
tions A~[5...].

4. CONCLUDING REMARKS

The form of the non-equilibrium part of the entropy,
+ + + 

of the generalized Gibbs equation (4) was proposed, in principle, in basis
to mathematical requirements only. Later, we found on the one hand the
meaning of the 03B1ij and their implication causality 2014 on the transport
equations and, on the other hand, we had observed that the cannot

vanish since in that case the correlations A~[5...] ] would vanish also,
which is against physical sense. Moreover, on physical grounds, we know
that the relaxation proper times, although generally small, are finite and
hence the 03B1ij cannot be set to zero.
To summarize, we se that the enter not only in the macroscopic des-

cription of the irreversible processes (transport equations), but also in
the mesoscopic one (fluctuations). Between both of them it exists a bridge,
namely the fluctuation-dissipation theorem, whose relativistic version
for thermoelectric fluids has been analysed here in a relaxation time approxi-
mation.
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