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Multiple tunnelings in d-dimensions :
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ABSTRACT. 2014 We study the properties of the Schrodinger equation
in d dimensions for a class of potentials, introduced in an earlier paper,
exhibiting a geometrical hierarchical structure. The main feature of such
models is that for low energy the particle can move to infinity only by

. tunneling through a sequence of barriers of increasing length. The quali-
tative properties of these models may be similar to those arising in periodic
potentials perturbed over different scales. The main result which holds
for the whole class of potentials is that quantum evolution is very slow
and can be characterized by : r2(t )  where r(t) is the distance
traveled by a wave packet of sufficiently low energy initially localized
near the origin. By imposing symmetries compatible with the hierarchical
structure we obtain the remarkable result that r2(t ) &#x3E; C’ (In t )~~ at least
for a sequence of increasing times, i. e. the motion is actually characterized
by a logarithmic growth. For these symmetric cases the spectral properties
of the Hamiltonian are studied in detail in the low energy region and we
show that the spectrum is not discrete but of zero Lebesgue measure.
Finally we add an arbitrarily weak random perturbation and we show
that in all cases r2(t )  const with probability one.
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RESUME. - On etudie les proprietes de 1’equation de Schrodinger
en d-dimensions pour une classe de potentiels hierarchiques decrits dans
un article precedent. La caracteristique principale de ces modeles est

Ie fait que la particule peut se déplacer vers 1’infini seulement par effet
tunnel a travers des barrieres de longueur croissante. D’un point de vue
qualitatif, ces modeles peuvent simuler les proprietes de potentiels perio-
diques perturbes a des echelles differentes. Le resultat principal, valable
pour tous les potentiels consideres, est la lenteur de 1’evolution quantique
qui peut etre caracterisee par r2(t )  ou r(t) est la distance tra-
versée par un paquet d’ondes d’energie suffisamment basse et initialement
localisee pres de 1’origine. Si on impose des symetries compatibles avec la
structure hierarchique, on obtient le resultat interessant r2(t ) &#x3E; 
pour une sequence de temps croissant vers 1’infini. Cela signifie que le
mouvement est en effet caracterise par une croissance logarithmique.
Dans les cas symétriques, on analyse en detail les proprietes spectrales de
l’Hamiltonien dans la region de basse energie et on trouve que le spectre
n’est pas discret mais a une mesure de Lebesgue egale a zero. Si on ajoute
une perturbation stochastique arbitrairement faible, on trouve que pour
tous les potentiels consideres r2(t )  const avec probabilite un.

1. INTRODUCTION

In this work we study the properties of the Schrodinger equation in
d-dimensions for a class of potentials exhibiting a geometrical hierarchical
structure. A description of these potentials is contained in a previous
paper [1] ] and will be given in greater detail in section II of the present
article.
The reason for studying such models is that they represent a first step

towards a detailed understanding of the behaviour of a quantum particle
in complicated potentials such as those that may result from perturbing
the structure of an ideal cristal. We believe that our approach may shed
new light on the physical mechanisms leading to localization of the wave
functions and/or absence of diffusion in disordered systems. To illustrate
our point of view we begin by discussing a simple example of a particle
moving initially in a periodic potential on a segment of finite length
(see fig. 1 ) with Dirichlet boundary conditions. In this situation there
is a lowest band of N eigenvalues differing one from the other by an amount

of the order exp ( - where A = 2 Jo 
Suppose now that we lower the height of some barriers, for example

de l’Institut Henri Poincaré - Physique theorique



75MULTIPLE TUNNELINGS IN d-DIMENSIONS

we lower all the barriers between a2] c [0, L] and [ - a2, - al ] c [ - L, 0]
by multiplying by a factor a  1 the potential in these intervals. The lowest
part of the spectrum and the shape of the lowest eigenfunctions in the
new situation can be easily analyzed using the methods of [2 ]. The effects
of the perturbation are the following :

1) The ground state is lowered. There is an isolated state closest to

the ground state at a distance of the order exp - Jo 
corresponding to a direct tunneling between the regions with lower poten-
tial. There are bands with energy splittings of the order of

corresponding to tunnelings across the small barriers. They are in number
N 1  N where N 1 is of the order of the number of low barriers. A number
of levels N - N1 of the original band is shifted at a distance » 
above the ground state.

2) The eigenfunctions corresponding to the ground state and to the
N 1 + 1 levels within a distance are. localized in the regions of
low potential and decrease exponentially in the regions of high barriers.
The lesson we learn from the above example is that the perturbed poten-

tial behaves roughly like a double well with a barrier which in terms of
ral i ~__

equivalent action has a height of 2 Jo 
This type of argument can be easily extended to the case where the

segments of low potential have different lengths and one finds, as expected,
that the situation is equivalent to an unsymmetric double well as those ,

studied in [2 ].
This example suggests naturally that as far as the low energy states are

concerned, a periodic potential over the whole line perturbed by lowering
the potential over a sequence of arbitrary segments can be studied in first
approximation as a system of wells separated by barriers of different length
corresponding to the non perturbed regions.

Vol. 42, n° 1-1985.
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In this way one is led to the introduction of a simpler effective potential
for the qualitative study of low energy properties [3 ]. The models we
construct in the following section are motivated by this idea. The principle
of the construction is very simple. We start from a constant potential V=~
over the whole space and we dig holes in it (i. e. we set V = 0 in certain regions)
in such a way that the resulting potential is approximatively self similar
over a sequence of rapidly increasing length scales dk.

This imposes a geometrical structure that we call hierarchical and
that can be realized in arbitrary dimension d. However for d &#x3E; 1 the
models share with the d = 1 case the property that communication among
the wells can take place only via tunneling through a barrier, i. e. we do
not admit corridors of low potential.
The main general result we prove for such potentials is that

for an initially localized wave packet ~ superposition of states of sufficiently
low energy.

If we restrict further the models by imposing symmetries compatible
with the hierarchical structure we can prove that for a suitable sequence
of times 00 

.

with ~ arbitrarily small. The reason why for the lower bound one has
to consider a sequence of tk is that between tk and tk+ 1 the wave packet
may contract.
For models with symmetries the analysis can be carried out much further.
In particular in the proof of the lower bound one shows that there

exist delocalized states including the ground state. As far as the spectrum
is concerned we show that for energies below the height of the barriers
the Lebesgue measure of any spectral interval is zero and there is no iso-
lated point of finite multiplicity.

In one dimension this implies that this part of the spectrum is a Cantor
set. At this point the natural question which however we do not discuss
in this paper is whether this spectrum is singular continuous. Our models
for d = 1 and E  ~ where ~, is the height of the potential, are in some
sense complementary to the one dimensional models constructed by
Pearson [4] J for which he proves the existence of singular continuous
spectrum. Pearson’s methods should allow to conclude that in our case
for d = 1 but E &#x3E; ~, the spectrum is singular continuous.
However, they are not applicable for E  /L For d &#x3E; 1 and E &#x3E; ~, our

symmetric models have a component of absolutely continuous spectrum.

Annales de Henri Poincaré - Physique theorique



77MULTIPLE TUNNELINGS IN d-DIMENSIONS

These models can be analyzed in great detail also if we add a stochastic
perturbation. We can show in fact that for an arbitrarily small random
perturbation all the low lying states become exponentially localized and
r2(t )  const with probability one.

All our models are constructed on the lattice 7Ld but as we will discuss
later everything extends naturally to the continuum .The paper is divided
in two parts.
The first part, sections II to VI, contains a description of the models

and of the results. The second part, which consists of section VII, is much
more technical in character, and contains all the proofs.

II DESCRIPTION OF THE MODELS

We give here the precise definition of the class of models we are going
to analyze.

Let do &#x3E; 1, a &#x3E; 1 and set In what follows the numbers
will play the role of length scales characteristic of the models

in consideration. For concreteness and simplicity we take a = 5/4 and
20; with this choice some numerical inequalities that will appear

in the proofs will be satisfied with no extra efforts. This particular choice of
length scales, which is the same as the one of Frohlich and Spencer paper [5]
on Anderson localization, is not essential for the results discussed in this
paper. For our purposes an increase like exp (k 1 + £), e &#x3E; 0 would be
sufficient.

Let now Ak ci 7Ld be the cube centered at the origin of size 4 with
its faces parallel to the coordinate axes. Here [ . ] stands for the integer
part.

DEFINITION. - A function V : 7~d -~ {0, ~ }, /). &#x3E; 4d is said to be a
« hierarchical potential » if for any k  0 the set

and it can be written as union of components Ck, Ak 
= with the

following two properties : . 

0152 
.

We observe here that the components { need not to be connected.
An interesting example can be constructed inductively as follows :

a = 1, ..., 2d be the cubes obtained by translating Ak along

Vol. 42, n° 1-1985.
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the coordinate axes by a distance ±2([3J~+i] 2014 [3dk ]) and let V :
~d -~ {0,~} be defined by :

Anna es de l’Institut Henri Poincaré - Physique - theorique -



79MULTIPLE TUNNELINGS IN d-DIMENSIONS

where j* E Ak is obtained from j E Ak by translating back the cube Af
till its center coincides with the origin.

It is clear that such a potential V satisfies the conditions of the general
definition if we take -

For reader’s convenience the structure of the function V is sketched
in fig. 2 :

Because of its special symmetries we will henceforth refer to this example
as the « symmetric hierarchical potential ».

Let now, for a hierarchical potential V, H be the tight-binding Hamil-
tonian :

The Hamiltonian H defines a bounded selfadjoint operator on l2(~d)
and our aim is to study its spectral properties and in particular its time
evolution.

In conclusion we would like to emphasize that most of the results of
this paper hold for a class of potentials which is considerably richer than
that fulfilling the general definition of this section.
As an example the barriers of length appearing in a box 

can be modified to contain chains of wells of diameter at a distance
one from the other not less than dk. However in this paper we have not aimed
at the maximum generality in order not to obscure the basic ideas.

III. UPPER BOUND ON r2 (t)

In this section we analyse the long time behaviour of the quantity

where H = - 0 + V, V being a hierarchical potential and 03C6 is an initial
wave packet well localized in space and in energy. Before we start this
analysis we need to locate the spectrum of the Hamiltonian H.

PROPOSITION 3.1. - Let V be a hierarchical potential and /), = ! 
Then :

Vol. 42, n° 1-1985.
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Proof - a) Because of the hierarchical structure of the potential V
the set B = {j E V ( j) _ ~, ~ contains spheres of arbitrary radius.
Thus the statement follows from Weyl’s criterium.

b) Let A c 7~d be an arbitrary finite box centered at the origin. It clearly
suffices to prove the result for HA where for an arbitrary region A c ~a
we denote HA the restriction of H to l2(A) with Dirichlet boundary condi-
tions, since subsequently we can pass to the limit A T ~d and use the strong
resolvent convergence of HA to H. Let then and be the eigen-
values of the matrices HA, VA respectively, VA being the restriction of V
to A. From the min-max principle we get :

since ~ - 0 I = 4d. Since V is either zero or 03BB the proposition follows.

Remark. - It follows from the proof that

We are now in a position to state precisely the main result of this section :

THEOREM 3.1. - Let 0394 = [0,4d] and be the spectral projection
of H associated to A. Define

Then for large t, r2(t ) satisfies the bound :

Proof Let ~, = (~, + 4d )/2 and let rt be the contour in the complex
plane clockwise oriented drawn in fig. 3:

Annales de Henri Poincaré - Physique ~ theorique 
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From the spectral theorem we get :

where G(z) _ (H - z) -1. -

Thus we have to estimate the kernel of G(z) P(H) for z E rt. This is the
content of the next lemma :

LEMMA 3.1. - There exist positive constants ~(/)), K(~), to, such that :
for any t &#x3E; to :

provided |y|  K(03BB) (In t)(5/4)2.
Furthermore m(~,) is estimated by :

The proof is given in the second part of the paper and relies heavily on a
theorem of Frohlich and Spencer [5 ].
Assuming the lemma we can complete the proof of the theorem. We

divide the sum appearing in the definition of into two parts :

The first term in (3 . 4) is bounded by :
const (In t)2~5/4)2

"while the second one, using the lemma and (3 . 3) is bounded by :
const 2 ~"t~~’1~2)K(~,)(ln t)~5~4&#x3E;2

Thus the theorem is proved.
This result requires some comments. First of all we want to give some

intuitive reasons why the ln t appears in the estimate of theorem (3.1).
In the energy range we are considering the spreading of the wave packet
can take place only through tunneling from one minimum of the potential
to the others. The mean time to overcome a barrier of length dl is of order
of exp for some c &#x3E; 0. The time necessary therefore to reach the

K

boundary of the box Ak is of order exp This argument is legitimate

Vol. 42, n° 1-1985.
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because, due to the rapid increase of the dk, tunneling on scale dk is very
weakly coupled with tunneling on scale 

Replacing now the sum with its last term leads to a simple logarithmic
relationship between space and time.
Lemma 3.1 expresses rigorously this fact as it implies the exponential

decay of the wave packet outside the sphere of radius K(/)) (In t)~5~4~2. The
exponent (5/4)2 instead of 1 is purely of technical origin as it will be discussed
at the end of the proof of the lemma.

IV THE SYMMETRIC HIERARCHICAL POTENTIAL

1. Spectral properties.

In this section we analyse more closely the Hamiltonian 
where V is a symmetric hierarchical potential introduced in section II.
The particular symmetries of this model will allow us to investigate in full
detail the structure of the spectrum of H below 4d and its time evolution

properties.
The basic result on the structure of the spectrum of H below 4d is :

THEOREM 4.1. - Let 1== 6(H) n [0,4d], where H=-A+V,Va
symmetric hierarchical potential.

Then :

a) The Lebesgue measure of I is zero.
b) I contains no isolated point of finite multiplicity i. e. I n 03C3dis (H) = 0

where 6dlS(H) denotes the discrete part of the spectrum of H.
The proof of this theorem is given in the second part. The result however

can be understood in simple terms. Suppose we consider first the Hamil-
tonian restricted to the box Ak with Dirichlet boundary conditions Hnk.
Its spectrum consists of discrete eigenvalues. When we go to the next scale

and we consider its part of the spectrum below 4d arises from
the splittings of the eigenvalues of HAk due to the tunnelings among the
equal boxes Ak contained in 039Bk + 1 over the scales Each level of H039Bk
splits into 2d + 1 levels whose spacing is at most of order exp ( - 
for some C _ &#x3E; 0 (see Fig. 4). Therefore the spectrum below 4d of 1 

_

is contained in a neighborhood of order exp ( - of the spectrum

From this it follows that I is contained in a neighborhood of order
00

exp ( - of the spectrum of HAk for arbitrary k.

l~k

Going to the limit a) and b) follow.

l’Institut Henri Poincaré - Physique theorique
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COROLLARY 4.1. - In the one dimensional case the set I is a Cantor

set (closed, no-where dense, with no isolated point).

Proof. - In one dimension the spectral multiplicity of H is at most 2.
Hence, using theorem 4.1 I has no isolated points. I is by definition closed
and no-where dense since I I I = 0.

For the part of the spectrum above ~, which is not discussed in detail
in this paper, as we mentioned in the introduction, for d = 1 the methods
of Pearson [4] should imply that we have singular continuous spectrum.
However the situation is different in d &#x3E; 1 where it is possible to construct
wave packets which are asymptotically free for large times. They evolve
in the complement of the cones

where aj are unit vectors associated to each direction of the coordinate
1

axes and tg y = - 
On the complement of the above cones the potential is constant by

construction. This implies that above ~, there is a component of absolutely
continuous spectrum.

2. Lower bound on r2 (t ).

We turn here to the analysis of the time evolution of - ð + V, and in

particular to the long time behaviour of r2(t). Our main result is summarized
in the following theorem :

where 5o is the Kronecker delta at x = 0 and H = - A + V, V a symme-
tric hierarchical potential. Then there exists a sequence of times { tk}

Furthermore the times tk’s satisfy the bounds :

for any k sufficiently large, where mo is a positive constant independent 
The proof of this theorem is based on a simple idea. If our system has

delocalized eigenfunctions, and an important part of the proof consists
in showing that this is the case, one can extract from the wave packet a

l’Institut Henri Poincaré - Physique theorique
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linear combination of two eigenfunctions with the following properties :
at t = 0 it is completely localized near the origin while at a time t  
where iBE is the difference between the corresponding eigenvalues, is loca-
lized at a distance 0(ln t ). This is completely analogous to what happens
in a symmetric double well potential if one considers for instance the sum
of the ground state and of the first excited state.

In order to prove the theorem we need more informations about the low
lying states of the Hamiltonian HAk for k large enough. These informations
are provided by the next proposition;

PROPOSITION 4. 2. - Let { E } and { t/1~ } be the eigenvalues and eigen-
functions of where is a cube of side 4 dk 5 + 1 cent e re d at the

origin. Then for k large enough the following holds :

a) Among the first (2d + 1) eigenfunctions there exists one, denoted
by ~~k~ with eigenvalue E~B which is different from the ground state 
and which is left invariant by reflections X~ -~ 2014 Xi i = 1 ... d, and by
rotation of 03C0/2 of the coordinate axes. Furthermore there are constants

and 2d with

such that for all x E Dk :

b) There exists ~ ~ B/M such that

c) ~ok&#x3E; &#x3E; 0 and ~ok~(o) &#x3E; const/(2d + l)k.
We assume the proposition and prove theorem 4.2. Define

Clearly, using the proposition; tk satisfies the stated bounds for k large
enough. The next lemma shows that up to time tk the dynamics gene-
rated by and are very close to each
other. ‘.

LEMMA 4 .1. 2014 For any k large enough, any t  tk and x ~ 039Bk:
i

for some 7M &#x3E; 0.

Vol. 42, n° 1-1985.
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The proofs of the proposition and of the lemma will be given in the
second part.
Using the lemma we can bound from below by :

Define now the function ~r~k~ = 
Using a) of proposition 4 . 2) we have :

Furthermore, being a linear combination of eigenfunctions with energy
less than 4d, ~r~k~ decays exponentially outside the boxes Dk, a = 0, ..., 2d.

by the definition o tk.
The estimates a) and 0 c) of proposition 4. 2) imply that the r.h.s. of (4. 2 . 3)

is bounded from below by :

On the other hand the l.h.s. of (4 . 2 . 3) is bounded above by :

The second term in (4.2.5) by (4.2.2) is exponentially small in dk i. e.

of order exp ( - m0dk/10) while the first one, using again proposition 4 . 2),
is less than or equal:

Combining (4.2.4) ... (4.2.6) we see that the restriction of the function
boxes Dk, (x = 1 ... 2d has norm greater

or equal than const (2d + ’1 ) - k~2. This, together with (4 . 2 .1 ) proves the
theorem.

Poincaré - Physique theorique
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V. RANDOM HIERARCHICAL POTENTIALS

So far we have considered situations in which the potential wells had
the same depth producing in this way resonances over all the length scales.
In this section we want to study the case in which the bottoms of the wells
may be at different heights.
A natural choice is to let them fluctuate under the effect of a random

perturbation. The perturbation is taken in such a way that the hierarchical
structure of V is preserved. More precisely we let d ~,(v) to be a probability
measure on the reals with a bounded density with respect to the Lebesgue
measure and support on [0, 1 ] and consider the probability space

Q = ([0,1], d/L(~)). We then call a random field V,: 

a « hierarchical random potential » if there exists a hierarchical potential V
such that :

for some /3 E (0,1). Here ~3 measure the strength of the perturbation. We
then consider the stochastic tight-binding Hamiltonian

The main consequence of the introduction of a stochastic perturbation
is that all the states with energy less than /)., ~, being the maximum value
of the deterministic part of Vv, become exponentially localized and

in turn the quantity r2(t) will stay bounded uniformly in t, for any 0  /3  1.
This is the content of the two main theorems of this section. In what follows

the coupling constant /3 will be supposed to be fixed within zero and one.

THEOREM 5.1. - There exists a set of realizations of the potential
Qo c 0 with P(Qo) = 1 such that if v E Qo and H(v) is the corresponding
Hamiltonian, the following holds :
let E  i~ be an energy for which

has a polynomially bounded solution then there exists a K(E, v) with
the property that any such is exponentially localized in the box 
in the sense that :

for all x with Here ~~-~ - E.
Vol. 42,~1-1985.
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THEOREM 5.2. - Let for 03BB &#x3E; e &#x3E; 0 :

Then with probability one there exists a finite constant C(v) such that

The proof of the above theorem is rather technical and is given in the
second part. Here we want to emphasize that the general random hierar-
chical models represent the first multidimensional case in which r2  C
has been proved. The specific features of our models allow to prove loca-
lizations for any d  1 independently of the strength of the stochastic
perturbation as it happens in the one dimensional Anderson model [6 ].

VI. EXTENSION TO THE CONTINUUM CASE

To conclude we wish to briefly discuss the extension of our analysis
to the Schrodinger operator in the continuous case. The simplest version
of a hierarchical potential V on Rd can be obtained by imposing that V
is a constant Vi on each unit cube Ci around the site i E 7~d and that 
is itself a hierarchical potential. This corresponds to a situation where
one has square wells separated by constant barriers. One could also
smoothen out the shape of the wells to get it while keeping the bottoms
of the wells all at the same level. Since the main ingredient of our analysis,
namely the Frohlich-Spencer bound on the Green’s function, has been
extended to the continuous case in [7] the above analysis can be carried
out without too much trouble also for -0394 + V on V a hierarchical

potential. A little complication arise when one tries to choose the height ~,
of the barriers among the wells in such away that for some ð &#x3E; 0 (/)20145, ~,)
is a gap for r(H). However this can be satisfactory solved, at least for the
simplest case V = Vi, by means of the Dirichlet-Neumann bracketing.
Also the random case is within the reach of our analysis provided we
perturb a hierarchical potential V by means of random fields such that :
v Ci = v(i) and the v(i)’s, i E are i. i. d. random variables.

VII. PROOFS

In this part of the paper we give detailed proofs of the results explained
in the first part.
An important tool will be a recent result obtained by Frohlich and

Spencer [5 in their analysis of the Anderson model concerning the expo-
nential decay of the Green’s function of tight-binding Hamiltonians res-

Annales de l’Institut Poincaré - Physique theorique
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tricted to bounded regions with Dirichlet boundary conditions. For

completeness we recall here their notations and main result in a form more
suitable for our purposes.

1 ) The Theorem of Frohlich and Spencer. ,

Let v : ~d ~ R, v &#x3E; 0 be bounded and let H = - 0 + v on 

For any set A c Zd we define :

and set HA to be the restriction of H to l2(A) with Dirichlet boundary
conditions at aA. We will also define :

whenever it exists.
For any positive a and m and any E let oc) c ~d be a sequence

of sets defined inductively as follows : .

where is the maximal union of components of
~

t~, ~, (x) such that:

where 
Here the length scales lj satisfy :

A set A c Zd will be said to be k-admissible iff 8A n C~ _ ~ b’j = 0,1 ... k
and any {3.
We are now in a position to state the modified Fröhlich-Spencer result :

THEOREM 7.1. - For any real and all m &#x3E; Cohere exist constants
1, independent of E such that if 1 ~ = and a ~ 

then for all k-admissible sets A with A n (x) = 0:

Vol. 42, n° 1-1985.
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The proof of the theorem is omitted since it follows word by word the
proof of theorem 2.1 in [5 ].

Remark. - 1) In their original paper Frohlich and Spencer expressed
the non-resonance condition as : dist (E, exp ( - It is easy

to check that as far as the exponential decay of the Green’s function the
two conditions are equivalent provided a is small enough. However with
our choice we will get a better estimate on the long time behaviour of the
mean square displacement.

2) In their proof Frohlich and Spencer used a sequence of length scales
increasing like the lk above. This choice was dictated by the needs of their
probabilistic estimates. The theorem on the decay of the Green’s function
however remains true for lk  exp (kl +E), E &#x3E; O.

2) Proof of lemma 3.1.

We begin the proof by proving the following estimate on the Green’s
function G Z :

for ! y! ~ k(~,) (ln t)~5~4~2 for a suitable constant ~).
In what follows the Fröhlich-Spencer result in the form given in theo-

rem 7 .1 will play a crucial role. Let m2 = 03BB - 03BB = 201420142014 and let (x = 

k0 = be the corresponding constants appearing in theorem 7.1.
Define now k(t ) as the smallest integer such that :

With this position we see that using the hierarchical structure of the poten-
tial V, for any k &#x3E; k(t) &#x3E; ko the box Dk+ 1 centered at the origin of side

4 dk + 1 is k - k o admissible and satisfies:
5

Thus from theorem 7 .1 we get :

provided |y| &#x3E; (1/5)lk_ko - (1/5)dk. 
Let k --_ k(y) be the smallest integer such that y E Dk+ 1 where Dk+ 1 is

a box centered at the origin of side 2 dk 5 + ~ J.
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We then see that there exists a constant ~) 2014 ~O(5/4)2 such that condi-
tion k(~,) (In t )~ 5 ~4~2 implies ~(y) ~ k(t) + 1. For Z E rt we can write,
using the first resolvent identity (see Sect. 2 of [5 ]) :

where for any set A c Zd the boundary operator TaA is defined by :

Using (7 . 2 . 2) it follows that the r. h. s. of (7 . 2 . 3) is bounded by :

where we have used the estimates :

i) I y|  (1/5)dk from the definition of k = k( y)
ii) Sup sup G(Z, x, y)|  sup ~G(Z)~  t  e03B10dk(t)

iii) exp { - mdk+ 1/10 + 1

which holds for t sufficiently large.
Thus inequality (7.2.1) is proved.
In order to conclude the proof of the lemma it remains to estimate the

kernel of PH. From the spectral theorem we have :

where y is a contour enclosing [0, 4d ] in the complex plane such that

Clearly from the definition of rt and proposition 3 .1 such a contour always
exists.

Using now the Combes-Thomas argument (see e. g. [ 8 ]) we get

We are now in position to estimate the kernel of G(Z)Po(H) for Z E rt.
From (7 . 2 . 6) and the resolvent identity we have :
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Using now (7.2.7) together with (7.2.1) and the bound

we have :

provided ! k(~,) (ln t)~5~4~2 and t is large enough.
The lemma is thus proved.
We would like at this point to make some comments both on the result

and on the assumptions of the theorem.
We first emphasize that the appearance of (5/4)2 in the exponent is

essentially due to the fact that we have not attempted to give the best
possible estimate. With some extra effort one can show that the expo-
nential decay of the Green’s function actually starts on the scale 
and this allows to change (5/4)2 into 5/4.

This residual dependence on the way the distances dk increase is due
to the fact that to any time s E is associated the same k(s) = k.
In fact if one estimates r2(t ) at the discrete times tk = one can infer
the bound :

As a second remark we point out that the assumption ~, &#x3E; 4d which
insures the existence of a gap in the spectrum of H, is important for the
exponential decay of the kernel of P (H).

3) Proof of Theorem 4.1.

Let be the cube centered at the origin of side 4 
dx + 1 

and let

[0,4d]. We also denote by Ik the closure of the exp (-dk+1)-
neighborhood of Ik. We will prove the following inclusions (see fig. 4) :

and

for all k sufficiently large.
Since ! exp ( - dk + 1 )dk, where |.| denotes the Lebesgue measure,

(7.3.2) implies (a). 
’

To prove (7.3.2) it clearly suffices, using (7.3.1) that we prove after,
to show that :
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The above inclusion (7 . 3 . 3) follows immediately from the strong resolvent
convergence of HDk+ 1 to H as k  +00.

It remains to prove (7. 3.1) and part b) of theorem 4.1. Let us fix k » 1
and consider a covering of Ik by disjoint, closed intervals {0394(k)i }Nki=1 with
the following properties :

The existence of such a covering is immediate if the points of the set

Ik ~ are spaced one from the other by more than 2 exp ( - 2~/~+i).
In this case each contains only one point of Ik. If there exist clusters
of points of whose spacing is less than 2 exp ( - 2 dk + 1) then
these clusters have a length at most

for k large enough, where we have used that # { E = (2d + 1)k # { E E 10 }
by the remark after proposition (3.1) and the definition of the symmetric
hierarchical potential. Thus the existence of a covering satisfying i ) and ii )
follows.

- 

For the proof of (7.3.1) and b) we need the following basic lemma:

LEMMA 7 . 1.

The meaning of this lemma is that each eigenvalue of the Hamiltonian HDk+ 1
splits into (2d + 1) eigenvalues with a spacing of at most 1/2 cxp(2014~/~+i).
The symbol # counts also the multiplicity.

Suppose now that k was chosen so large that

then from the lemma and the relationship :

we get (7 . 3 .1 ).

Proof of lemma 7.1. This is obtained if we prove that :

where Tr stands for trace and is the spectral projection of HDk
associated to ð. To prove (7 . 3 . 6) let us henceforth denoted by ð,
and let us consider a circle y in the complex plane with diameter equal
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to the length of A and center in the middle point of Ll. By the spectral theo-
rem we have :

Let now { D~+1 }~o. == be the cubes obtained by translating
along the coordinate axes by an amount of ±2 { [3~+i]2014 [3~]},

let r = r 2d be the boundary operator associated to their boundaries

and G(Z) the Green’s function ofHDk+2 2 with additional Dirichlet boundaries
2d

condition at 
x=0

Then from (7 . 3 . 7) and the first resolvent identity we get :

Since the operators Ho. differ only by a translation (7 . 3 . 8) implies :

We estimate now the r. h. s. of (7 . 3 . 9). Let { and { t/1 n } be the eigen-
2d

functions of HDk+2 and 0 HD03B1 + 1 respectively with eigenvalues in A.
o:=0 ~~

Then, from (7 . 3 . 8), (7 . 3 . 9) we have :

and

where ,) is the scalar product in l2(Dk + 2) and we have extended {03C8n}
2d 2d

outside by setting them equal to zero outside U 
oc=0 ~=0

We discuss only the second term in the r. h. s. of (7 . 3 .10) since the case

(7. 3 .11) is completely analogous. Using the fact are eigenfunc-
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tions of with eigenvalues En E ð, the n-th term in the sum in (7 . 3 .10)
is equal to :

Since En E (0, 4d) and the potential V is equal to /) &#x3E; 4d in

it is easy to show that :

Furthermore from the definition of { }, inf ~ Z &#x3E; exp ( - 2-y~+i).
Hence (7 . 3 .12) is estimated by : zEy

for k large enough.
(7.3.4) implies in turn that the sum in the r.h.s. of (7 . 3 .10) is bounded by :

Hence ’ Tr Po(H Dk + 2)  (2d + 1 ) Tr 
Analogously one " Droves’

and the lemma is proved.
To prove part b) let E be an isolated point of I. There exists then a ð’-neigh-

borhood of E, Da such that : dist (IB{ &#x3E; 25 and by the previous
discussion a ko such that dist(E,I~)~~’~~~/4. Using (7 . 3 . 4)
we now get :

A k-times iteratlon 0 (/. j. .16) gives:

00

Since I exp(2014~)~/4 for ko large enough (7 . 3 .17) implies :
1
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It is easy to show that (7 . 3 .18) implies :

i. e. E has infinite multiplicity.

4) Proof of Lemma 4.1 and of Proposition 4.1.

From the spectral theorem, (7.2.3) and (7.2.8):

where " is the contour drawn in Fig. 3 and 0 y is as in (7.2.6).
o const em’Odk the second 0 term in the r. h. s. of (7 . 4 .1) is bounded

by:

Since the potential V is equal to /). &#x3E; 4d in Dk+ it is easy to see that:

for all y E Z E 0393t ~ y and k large enough. As usual m  03BB-4d.
Hence (7 . 4 . 2) is smaller than e-mdk+ 1 for some m &#x3E; 0 ; this, together

with (7 . 4 .1), implies :

for k large enough and ~ tk.
We are left with the proof of proposition (4.1).

Part c). - It is quite easy to check that = ~°.
Using part a) we can proceed by induction. In fact assume that :

with

Then from a) we obtain :
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Hence if do is so large that :

03B40 for any k.

For d = 1, 2, 3 our choice 20 is sufficient to satisfy (7.4. 5). As far
as the positivity of ~ is concerned we refer to [9].

Part b). The bound E~2d - Eo ~ ~ actually follows from the proof
of theorem 4.1. To estimate we observe that because of the sym-
metries of the potential the eigenfunction 03C8(k)1 can be chosen to be antisym-
metric with respect to the ..., x 1 = 0 }. Hence ~r lk~ [ ~ = 0
so that the restriction of to the set n ~ x E Zd; xl  0 } = 
is an eigenfunction of the Hamiltonian 1 with an additional Dirichlet
boundary condition on 7L Therefore :

If now V denote the function :

we get from the monotonicity of the eigenvalues with respect to the poten-
tial :

If denotes the ground state wave function of HDk+ 1 + V we finally
get from (7 . 4 . 8) :

It is now easy to check [7~] ] that the exponential decay of ~ cannot
/ / 2d BB

be faster than : dist (x, D03B1k ~{x; x 1  0 } ; with :

i. e.

since

Hence b) follows from (7.4.9).
Part a). For simplicity we discuss only the two-dimensional case d = 2.

Let y be a circle in the complex plane centered at of radius
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5 = 1/2 exp ( - where mo is the constant appearing in b). From
the proof of theorem 4 .1 and part b) we know that there are exactly 5 = 2d + 1
eigenvalues of HDk+ 1 enclosed by y at distance from less or equal
than exp ( - ~).
We can therefore write for ~=0, ..., 4 :

For x E Dk we now expand as :

and insert (7.4.11) into (7 . 4.10). Since is not enclosed in y this gives:

As in the proof of theorem (4.1) it is easy to see that the second term
in the r. h. s. of (7 . 4 .12) can be estimated for k large enough by :

Clearly because of the symmetries of the problem the same analysis
can be repeated for each of the cubes Dk, a = 1, ..., 4 provided we change
the constant into and we translate the function by an
amount :t 2([3~+i] 2014 along the coordinate axes. We now observe
that with symmetry arguments one can construct the five eigenfunctions

with eigenvalues enclosed in y as follows :

~~ is symmetric with respect to the coordinate axes and to the two
diagonals x = y, x = - y.

is antisymmetric with respect to the plane x = 0 and symmetric
with respect to y = 0.

is antisymmetric with respect to y = 0 and symmetric with respect
to jc = 0.

That this is actually the correct ordering of the first three eigenfunctions
can be proved using the monotonicity of the eigenvalues of HA with respect
to A.
A fourth eigenfunction must be antisymmetric with respect to both the

diagonals x = y, x = - y. A fifth eigenfunction which we call ~~k~ (*) must
be symmetric with respect to the planes x = - y. To see this

(*) Note that with respect to the ordering of the eigenvalues in increasing order,
can be either 03C8(k)3 or 03C8(k)4; however this ambiguity is irrelevant for our discussion.
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it is enough to observe that using the normalization condition on the 
and (7 . 4 .12) one gets :

n = 0, ... , 4 where ank~°~ - and subsequently to impose the ortho-
gonality with the other eigenfunctions. Let now a~k~°‘~ be the constants

computed for Because of the symmetries of both and 
we have :

Furthermore we must have :

and by the orthogonality condition :

This gives :

To estimate a(k)0 and a(k)0 from below we proceed as follows : (see fig. 5).
Let X* == (2( [3dk ] - [3dk _ 1 ]), 0), and let A, A* be the cubes of side

2( [3dk ] - 2 centered at x = 0 and x = x* respectively.
Then is the solution of the two Dirichlet problems

Since  Eo(HA) = we can write, using the symmetry of 

where 3 = n 
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The Green function and are both positive; furthermore
differs from only by a translation. Hence (7 . 4 .18) gives:

that is :

A similar trick shows that

Annales de l’Institut Henri Poincaré - Physique " theorique 



101MULTIPLE TUNNELINGS IN d-DIMENSIONS

These last two inequalities together with the normalization condition (7.4.15)
give finally :

and the proposition is proved for d = 2. The proof for d &#x3E; 2 goes along
the same lines.

5) Proof of theorems 5.1 and 5.2.

We divide the proof of the theorem (5.1) into several lemmas :

LEMMA 5.1. - Let V be the deterministic part of the random poten-
tial Vt,, i. e. = V(x) + and let Ck, k = 1, 2, ... be the corres-
ponding sets of points where V(x) = 0.

Let also for any a and k

Then there exists a set Qo c Q with P(Qo) = 1 such that Vv E Qo we can
find a ko(v)  + oo with the property that :

for any a and any k &#x3E; 

Proof. 2014 By the Borel-Cantelli lemma it is enough to show that :

is summable 

Using Wegner argument (see [77 ] and also lemma 2 . 4 in [5 ]) for a fixed (x:

Since # {C03B1k; C03B1k~039Bk+1/039Bk}  const 1 (7 . 5 .1 ) is clearly summable
and the lemma is proved.
The following is the key step of the proof :

LEMMA 5.2. - Let (E, be as in theorem (5.1). Then there exists
a E) such that for any k &#x3E; E) :

Proof 2014 We suppose the contrary, namely that there exists a sequence
{ ~ }, kn ~ + oo, as n  +00 such that :
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Take now n so large that kn &#x3E; ko(m) and where
m2 = /). 2014 E and ko(m) are the constants appearing in theo-
rem 7 .1.
For such n’s is also the unique solution of the Dirichlet problem :

where D k + 1 is the cube of side 4 dk 5 + 1 cent e re d at the origin. Using now

(7 . 5 . 3) and theorem 7 .1 we set:

for all ~ 2014 ~ ~ dkn + 1/5, where ~~ ~ ~ 2014 E.
Thus, expressing the solution of the problem (7.5.4) in terms of

Gn, ..as: 
-

and using (7.5.5) together with the polynomial boundedness of by
taking the limit ~ -~ + oo in (7.5.6), we get = 0. Therefore (7.5.3)
is false and the lemma is proved.
We define now k(E, v) = max kl(E, v), kl(E, v) being

defined by lemma 5 .1, lemma 5 . 2 respectively.
Finally we let k(E, v) k(E, v) to be the smallest k  k(E,v) such that

exp - 1. With this definition we have :

LEMMA 5 . 3. - i ) For any k &#x3E; k(E, v), which by lemma 5 .1 is finite

with probability one,

ii) For any k &#x3E; k(E, v), any x, y with and

Proof 2014 f) From the definition ofk(E, v) we have that for any k &#x3E; k(E, v)

which implies: where S,(E,V) are

the set of singular sites defined in Section VII 91. Thus ~) follows from
theorem 7.1. ~

n) Using (7.5.6) and theorem 7.1 we also get that for ~ - y ! I ~ ~ :
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In order to extend (7. 5 . 7) to the range of x and y described in the lemma
we expand as:

where x and yare as in the statement of the lemma &#x3E; k(E, v)
is such that :

By the choice of j and (7.5.7) the first term in (7.5.8) has the correct

behaviour: exp ( - I). We observe now that by construction
dist (~ ~+1) ~ _ and dist ~,+2) ~ - ~+2. Hence if we

expand the second term in (7.5.8) as:

we obtain that each term ~~ computed at points x’, /

with x’ - y’ ~ &#x3E; - 5 d~ + i -1 and therefore they are estimated as (7 . 5 . 7).
Hence we can bound (7 . 5 . 8) by :

by the choice of j and of k(E, v).
The lemma is proved.
We are now in a position to give the proof of theorem 5 .1. Fix k &#x3E; k(E, v)

and consider in the Dirichlet problem:

where is one of the polynomially bounded solutions = 0.
By lemma 5 . 3, problem (7.5.12) has a unique solution which coincides

with Thus :
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Clearly ’&#x26; 0 » = - .., + and ’ in turn:

The first term in the r. h. s. of (7 . 5 .14), for dist (x, 
is estimated using lemma 5 . 3 by : 5

To estimate the second term we choose k so larse that

We can then apply (7. 5. 7) and the polynomial boundedness of to get
that the second term vanishes in the limit ~-~+00. The theorem is
now proved.
We now turn to the proof of theorem 5 . 2. We have to estimate a temporal

evolution and the natural approach is to perform a spectral decomposition
of exp ( - in terms of generalized eigenfunctions [8]
[12 ] :

where is the spectral measure of H(v) and the kernel F(x, 0, E, v)
is defined for E E 0" with a"( f o, ~, - E 1 B 0") = 0 bv :

Here 5 &#x3E; d/2 and {fj }N(E)j=1 are orthogonal functions in such that

(1 + x2)a~2 f~(x) are solutions of the Schrodinger equation :

The normalization is chosen in such a way that

and N(E) counts the multiplicity.
The usefulness of the decomposition of (7 . 5 .16) in this case comes

from the fact that the s are polynomially bounded and by theorem 5 .1
exponentially localized dn the box We shall be able in fact to show
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that |x| F(x, 0, E, v) E l2(Zd) for v in a set of measure one, uniformly in E
for E E From theorem 5.1 we see that each attains its maximum
value in I~~,v~ + 1; hence using the fact 1 we obtain :

We now estimate F(x, 0, E, v) I for E E 0". We distinguish two diffe-
rent cases :

We observe that for all E E 0" such that a) is verified k(E, v) = k(v).
The geometrical meaning of a) is therefore that the eigenfunctions ~p~
are exponentially localized in the box which is independent of E.
In case b) the eigenfunctions ~p~ are localized in the box which may
increase with E, but as we will show, they are exponentially small at the
origin.

Therefore their contribution to the initial wave packet is small.

a) In this case using theorem 5.1 and (7 . 5 .19) we get :

with m2 = ~ 2014 E &#x3E; ~, x ~ Dk~"~ + 1 and C &#x3E; 1 a numerical constant. For
we bound 

It remains to estimate the multiplicity N(E).

LEMMA 5 . 4. - N(E) ~ for Assuming the lemma
we complete the discussion of case a). We write :

Using (7 . 5 . 20), (7 . 5 . 21) and lemma 5 . 4, the r. h. s. of (7 . 5 . 22) is bounded
uniformly in E for all E such that a) is verified.

b) In this case, from the definition of v) we have :
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We can therefore apply to the cube the argument used in the proof
of lemma 5 . 2 to get :

which in turn implies :

for x ~ Dk1(E,v) + 1.

Again, using lemma 5 4 we infer from (7 . 5 .25) and (7 . 5 26) that:

is bounded uniformly in E for 
Writing now :

and using Schwartz inequality in (7 . 5 .16) we obtain :

We are left with the proof of lemma 5 . 4.

Proof of lemma 5.4. Let us consider the functions fj=fj/~fj~. For

get from theorem 5.1, (7.5.19) and the relationship
+ x2) - a~2 the estimate :

Choose now L so large that on the cube A of side L centered at the origin
one has : 

’

with e = exp 0 ( - 
Clearly, since the are 

’ orthonormal in l2(~d), using (7. 5 .27) such an L
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_ 

always exists and actually it can be taken equal to Using the
- 

Gram-Schmidt orthogonalization procedure we define :

and

By construction the are orthogonal and from (7 . 5 . 28) we get :

which implies, together with i ) and ii):

Since dim [2(A) = L d it follows that t/1 = 0 for any f &#x3E; Ld i. e. ~ = 

In what follows we will show that 03B4i 4~i for all i  N with N2 = (16£) - I.
Since this implies that: ~~~/8 for all f ~ - 1 which gives,

using the normalization of == 0 Vi E (Ld, 1 4eL/2], i. e. N(E)  U.

The estimate on 03B4i is proved by induction. First we observe that ðl = O.
So let us assume the bound to be true up to f  N and let us estimate ~+1.
From 7. 5 . 30 we get:

Furthermore, by the choice of N,

Thus, inserting (7 . 5 . 32) into (7 . 5 . 31) we get :

The lemma is proved.
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Note added in proof :
After this work was submitted for publication the localization of the eigenstates

of the Anderson model for large disorder was proved by showing that the typical
configurations have the structure of the random hierarchical models studied in
this work. This result will appear in a joint paper by J. Frohlich, F. Martinelli,
E. Scoppola, T. Spencer.
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