Complex scaling technique in non-relativistic massive QED
Annales de l'I.H.P. Physique théorique, Tome 42 (1985) no. 3, pp. 311-327.
@article{AIHPA_1985__42_3_311_0,
     author = {Okamoto, T. and Yajima, K.},
     title = {Complex scaling technique in non-relativistic massive {QED}},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {311--327},
     publisher = {Gauthier-Villars},
     volume = {42},
     number = {3},
     year = {1985},
     mrnumber = {797278},
     zbl = {0594.58057},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1985__42_3_311_0/}
}
TY  - JOUR
AU  - Okamoto, T.
AU  - Yajima, K.
TI  - Complex scaling technique in non-relativistic massive QED
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1985
SP  - 311
EP  - 327
VL  - 42
IS  - 3
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1985__42_3_311_0/
LA  - en
ID  - AIHPA_1985__42_3_311_0
ER  - 
%0 Journal Article
%A Okamoto, T.
%A Yajima, K.
%T Complex scaling technique in non-relativistic massive QED
%J Annales de l'I.H.P. Physique théorique
%D 1985
%P 311-327
%V 42
%N 3
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1985__42_3_311_0/
%G en
%F AIHPA_1985__42_3_311_0
Okamoto, T.; Yajima, K. Complex scaling technique in non-relativistic massive QED. Annales de l'I.H.P. Physique théorique, Tome 42 (1985) no. 3, pp. 311-327. http://archive.numdam.org/item/AIHPA_1985__42_3_311_0/

[1] J. Aguilar, J.M. Combes, A class of analytic perturbations for one body Schrödinger Hamiltonians, Commun. Math. Phys., t. 22, 1971, p. 269-279. | MR | Zbl

[2] S. Albeverio, An introduction to some mathematical aspects of scattering in models of quantum fields, In Scattering theory in Mathematical Physics, Lavita, J. A. and Marchand, J. P. (eds.): Dordrecht; Reidel Publishing Company, 1974.

[3] A. Arai, Selfadjointness and spectrum of Hamiltonians in non-relativistic quantum electrodynamics, J. Math. Phys., t. 22, 1981, p. 534-537. | MR | Zbl

[4] H.A. Bethe, The electromagnetic shift of energy levels, Phys. Rev., t. 72, 1947, p. 339-341. | Zbl

[5] A. Grossmann, A. Tip, Hydrogen atoms interacting with a quantized radiation mode, J. Phys. A. Math. Gen., t. 13, 1980, p. 3381-3397. | MR

[6] R. Hoegh-Krohn, On the spectrum of the space cut-off: P(φ): Hamiltonian in two-space-time dimensions, Commun. Math. Phys., t. 21, 1971, p. 256-260. | MR

[7] J.M. Jauch, F. Rohrlich, The theory of photons and electrons (2nd ed.), New York, Springer, 1976. | MR

[8] T. Kato, Perturbation theory for linear operators (2nd ed.), New York, Springer, 1976. | MR | Zbl

[9] Y. Kato, N. Mugibayashi, Regular perturbation and asymptotic limits of operators in quantum field theory, Prog. Theor. Phys., t. 30, 1963, p. 103-133. | MR

[10] M. Reed, B. Simon, Method of modern mathematical physics, IV, Analysis of Operators, New York, Academic Press, 1978. | MR | Zbl

[11] B. Simon, Resonances in n-body quantum systems with dilation analytic potentials and the foundations of time-dependent perturbation theory, Ann. Math., t. 97, 1973, p. 247-274. | MR | Zbl

[12] K. Yajima, Resonances for the AC-Stark Effect, Commun. Math. Phys., t. 87, 1982, p. 331-352. | MR | Zbl