@article{AIHPA_1985__43_2_133_0, author = {Hudson, Robin and Lindsay, Martin}, title = {The classical limit of reduced quantum stochastic evolutions}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {133--145}, publisher = {Gauthier-Villars}, volume = {43}, number = {2}, year = {1985}, mrnumber = {817531}, zbl = {0581.60067}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1985__43_2_133_0/} }
TY - JOUR AU - Hudson, Robin AU - Lindsay, Martin TI - The classical limit of reduced quantum stochastic evolutions JO - Annales de l'I.H.P. Physique théorique PY - 1985 SP - 133 EP - 145 VL - 43 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1985__43_2_133_0/ LA - en ID - AIHPA_1985__43_2_133_0 ER -
%0 Journal Article %A Hudson, Robin %A Lindsay, Martin %T The classical limit of reduced quantum stochastic evolutions %J Annales de l'I.H.P. Physique théorique %D 1985 %P 133-145 %V 43 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPA_1985__43_2_133_0/ %G en %F AIHPA_1985__43_2_133_0
Hudson, Robin; Lindsay, Martin. The classical limit of reduced quantum stochastic evolutions. Annales de l'I.H.P. Physique théorique, Tome 43 (1985) no. 2, pp. 133-145. http://archive.numdam.org/item/AIHPA_1985__43_2_133_0/
[1] Quantum stochastic processes Publ. R. I. M. S., t. 18, 1982, p. 97-133. | MR | Zbl
, and ,[2] Quantisation and the uniqueness of invariant structures. Commun. Math. Phys., t. 89, 1983, p. 77-102 and Addendum, t. 93, 1984, p. 141. | MR | Zbl
,[3] Deformation theory and Quantisation. I Deformations of symplectic structures. II Physical applications. Annals of Physics, t. 111, 1978, p. 61-110 and p. 111-151. | MR | Zbl
, , , and ,[4] Mécanique aléatoire. Lecture Notes in Mathematics, t. 866. Springer-Verlag, 1981. | MR | Zbl
,[5] Operator algebras and quantum statistical mechanics. Springer-Verlag, 1981. | MR | Zbl
and ,[6] Quantum mechanical Wiener processes. J. Multivariate Anal., t. 7, 1977, p. 107-124. | MR | Zbl
and ,[7] The classical limit for quantum dynamical semigroups. Commun. Mat. Phys., t. 49, 1976, p. 113-129. | MR | Zbl
,[8] Diffusion processes, quantum dynamical semigroups and the classical K. M. S. condition. J. Math. Phys., t. 25, 1984, p. 1050-1065. | MR
and ,[9] The classical limit for quantum-mechanical correlation functions. Commun. Math. Phys., t. 35, 1974, p. 265-277. | MR
,[10] Quantum Ito's formula and stochastic evolutions. Commun. Math. Phys., t. 93, 1984, p. 301-323. | MR | Zbl
and ,[11] A non-commutative martingale representation theorem for non-Fock quantum Brownian motion. J. Funct. Anal., t. 61, 1985, p. 202-221. | MR | Zbl
and ,[12a] Uses of non-Fock quantum Brownian motion and a martingale representation theorem. To appear in the Proceedings of the 2nd workshop on Quantum Probability and Applications, 1984. Ed. Accardi L. et al. Lecture Notes in Mathematics. | Zbl
and ,[12b] PhD Thesis, Nottingham, 1985.
,[13] Stochastic differential equations and diffusion processes. North-Holland, 1981. | MR | Zbl
and ,[14] The C*-algebra of a free Boson field. Commun. Math. Phys., t. 1, 1965, p. 14-48. | MR | Zbl
,[15] On the generators of quantum dynamical semigroups. Commun. Math. Phys., t. 48, 1976, p. 119-130. | MR | Zbl
,[16] Quantum mechanics as a statistical theory. Proc. Camb. Phil. Soc., t. 45, 1949, p. 99-124. | MR | Zbl
,[17] Die Eindeutigkeit der Schrödingerden Operatoren. Math. Ann., t. 104, 1931, p. 570-578. | JFM | MR | Zbl
,[18] Conditional expectations in von Neumann algebras. J. Funct. Anal., t. 9, 1972, p. 306-321. | MR | Zbl
,[19] The theory of groups and quantum mechanics (tr. Robertson H. P.). Dover, New York, 1950. | Zbl
,[20] On the quantum correction for thermodynamic equilibrium. Phys. Rev., t. 40, 1932, p. 749-759. | JFM | Zbl
,