
ANNALES DE L’I. H. P., SECTION A

ERIK BALSLEV

ERIK SKIBSTED
Boundedness of two- and three-body resonances
Annales de l’I. H. P., section A, tome 43, no 4 (1985), p. 369-397
<http://www.numdam.org/item?id=AIHPA_1985__43_4_369_0>

© Gauthier-Villars, 1985, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1985__43_4_369_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


369

Boundedness of two- and three-body resonances

Erik BALSLEV Erik SKIBSTED

Aarhus Universitet, Matematisk Institut,
Ny Munkegade, DK-8000, Aarhus C, Danmark

Ann. Inst. Henri Poincaré,

Vol. 43, n° 4, 1985, Physique theorique

ABSTRACT. - We prove that the set of dilation-analytic resonances is
bounded for two-body Schrodinger operators with dilation-analytic mul-
tiplicative potentials having short-range boundary values.
For the three-body problem with dilation-analytic multiplicative short-

range interactions we prove that resonances are bounded in any strip
between cuts associated with consecutive two-body thresholds. For pair
potentials going to zero faster than r - 2 at oo an upper bound on the real
part of resonance energies is obtained.

RESUME. - On demontre que 1’ensemble des resonances, definies par
la methode d’analyticite par rapport aux dilatations, est borne pour les
operateurs de Schrodinger a deux corps avec des potentiels multiplica-
tifs analytiques, a valeurs au bord de courte portee.
Pour Ie probleme a trois corps avec des potentiels a deux corps multi-

plicatifs, analytiques, a courte portee, on demontre que 1’ensemble des
resonances est borne dans chaque bande entre deux coupures associees
aux seuils, soit des valeurs propres, soit des resonances des problemes
a deux corps associes. Pour des potentiels decroissant plus vite que r - 2
a l’infini les energies de resonance sont bornees.

Resonances are defined in the dilation-analytic theory as discrete eigen-
values of a complex-dilated Hamiltonian [6 ], [13 ]. In the two-body case
and in the many-body case above thresholds it is easy to show that the
set of resonances is bounded in any angle smaller than the maximal sector

Annales de l’Institut Henri Poincoré - Physique theorique - Vol. 43, 0246-0211
85/04/369/29/$/4,90 (Ç) Gauthier-Villars



370 E. BALSLEV AND E. SKIBSTED

defined by the potential. This leaves the question open, whether the reso-
nances remain bounded up to the limiting half line e -2iaR+ (Sa is the ana-
lyticity sector of the potential) and between cuts in the many-body case.

In the two-body case examples of the type oc &#x3E; 0 are given
in [14 ], which show that the set of dilation-analytic resonances may be
bounded ( - 2  ~8  - 1) or unbounded ({3 = 1, oc = 2). These examples
suggest that if the boundary operator V(ia) is defined by a short-range

potential (here 03B303B2e-i03B3a), then the set of dilation-analytic resonances
is bounded. This is in fact proved in Theorem 2.1 for dilation-analytic,
multiplicative potentials with 0394-form-compact, short range boundary
values.

In the many-body case boundedness of resonances in strips parallel
to and at a positive distance from cuts was proved in [3] for pair potentials
going to 0 at oo faster than r - E, 8 &#x3E; 0. Here we restrict the discussion
to the three-body problem, where resonances are identical with singular
points of the analytically continued Faddeev matrix A(z, ~) (z dilation
parameter, , energy variable) [4 ]. It is further shown in [4] that for short-
range potentials A(z, ~) has continuous boundary values 
a suitably weighted L 2-space-on the cuts associated with two-body
thresholds. This together with the two-body result suggests that three-body
resonances are bounded in any closed strip bounded by two consecutive
cuts (except the one starting from 0) for dilation-analytic, multiplicative,
0394-form-compact, short range pair potentials. This is precisely our main
result, formulated in Theorem 3.1. It is proved by showing that ~ A2(z, 0!! ~ 0
for ~ -~ oo within any such strip in a certain weighted L2-space. This
result could also be formulated so as to include the boundary values

~), and hence Theorem 3.1 includes any resonances that might lie
on the cuts bounding the given strip (Remark 4.7). This is useful for a
possible extension of the local scattering theory of [4] to a global theory.
We also note that, under a weak additional condition on the potentials,
the estimate of ~ A2(z, 0 !! is uniform in the dilation angle 03C6, away from 0

7C
and - (Theorems 4.2 and 4.4).

For pair potentials going to zero faster than r - 2 - E at oo stronger results
are obtained. The zero-channel is included (Theorem 5 .1 ), and the uni-
form estimates hold for ~p up to 0 (Theorem 5.6). This means that there
are no three-body resonances above a certain energy. For this result we
have to assume that the two-body systems have no zero-energy resonance
or positive energy bound states. Related results for such potentials are given
in [7J].
We emphasize, that the results of Theorems 2.1 and 3 .1 are concerned

only with dilation-analytic resonances. The set of resonances, which may

l’Institut Henri Poincaré - Physique theorique



371BOUNDEDNESS OF TWO- AND THREE-BODY RESONANCES

be studied by other methods of analytic continuation, may be unbounded.
In the two-body case it is actually proved [7~] for the potentials 
- 2  [3  - 1, a &#x3E; 1, that the resonances converge to 00 along ~ i ~{R~
outside the dilation-analytic sector. In the three-body case with dilation-
analytic potentials decaying faster than any exponential, the Faddeev
matrix and the resolvent have analytic continuations to a much larger
Riemann surface, extending to 00 on all sheets, than the one defined by
dilation-analyticity [5 ], leaving the possibility open of an unbounded
set of resonances on this Riemann surface. It is tempting to conjecture
that for a three-body problem with the above Gaussian type of pair poten-
tials, resonances are unbounded and converge from the outside to the limi-
ting dilation cuts.

1. DEFINITIONS AND NOTATIONS

For t we introduce the following Hilbert spaces and Banach spaces
of complex-valued functions on l~ 3 :

The Sobolev space H-l(1R3) of order - 1 is the dual of H1(~3). The
weight function fS is defined for s &#x3E; 1 by

For s &#x3E; 1 and /? &#x3E; - we consider the function spaces

We note that R c for s ~ 3 and Mp 
We shall make use of the following property of functions in Ms and Mp.

Vol. 43, n° 4-1985.



372 E. BALSLEV AND E. SKIBSTED

LEMMA 1.1. - Let V ~ Ms. Then for every 03B4 &#x3E; 0 there exist V03B41~R~L11-s
and V2 E L~ such that

Let V E Mp. Then for every 5 &#x3E; 0 there exist Vi E Lp n Ls and V2 E L~
such that

Proof - For a given decomposition V = V1 + V2 let

If by Lebesgue’s dominated convergence theorem
Vl,n ~ Vl in L~ L1), and the Lemma follows.

By { U(p) ~ p E [R+ } we mean the dilation group on A. We fix throughout
this paper a, 0  a _ ~ . It is emphasized that the restriction a ::::;; "2 is

only for convenience, the results can be extended to a &#x3E; 
-. By Sa 

we

mean { z =~ 0 H Argz !  a }, Sa = { z =t= 0 I Argz ! - a ~.
In the two-body case the masses of the two particles ( 1 and 2) are denoted

by m 1 and m2 and their reduced mass by /1 = + m2 1 ) -1. Then
~

the free Hamiltonian in the center-of-mass system is ho = - , and for
2/1

V E R + the total Hamiltonian h is constructed in a standard

way [72] ] [7~] using the closed quadratic form

It is assumed V is Sa-dilation-analytic [13 ], i. e. the 
function V(p) = pE+, has a continuous extension V(z)
to Sa such that V(z) is analytic in Sa. Furthermore we assume that V(eia) E Ms
for some s &#x3E; 1. For the construction of the dilated Hamiltonians

h(z) = z-2Ho + V(z), z E Sa, we refer to [13 ]. The essential spectrum 
is z’~M~ and the non-real, discrete spectrum r lfJ of h(z) (z = lies in
the sector between ~ + and and is otherwise z-independent [6] [73 ].
It is easy to see that ra = 

.

Since the result and all proofs in the two-body case are concerned with

l’Institut Henri Poincaré - Physique theorique



a fixed operator h(eia), we omit for simplicity of notation the variable eia,
making the following change of notation.

-e - 2 ia ~ ~ ho~ ~ V -~"~ + V(ela) ~ h2/1 
0, , 

2/1 
’

( ,~ )-1 for B 2,u 
( / -4 ro(O for 

/ A B-l 
__-~-~+V(~)-n ~ r(() for B 2,u /

If we need to specify the variable ~, we write V(p) for 
We factorize V as V = AB, where A = sign V, B = V 2 .
The symmetrized resolvent equation is

r(1) = ro(0 - + ( 1.1 )

valid for such that ( 1 + Bro(()A) -1 exists. It is easy to see that if V E MS,
this is the case precisely for ( E p(h). In fact, the B1J is an iso-
morphism of %(h - Q onto ~V’(1 + (Bro(()A E £3(l$)). We shall
return to the operator-function in Section 2, where it is proved
that for V E Ms Il 118(J(A) - 0 for ( - implying
boundedness of ra.

For the 3-body problem we use the following standard notations. Let
particles 1, 2, 3 have masses ml, m2, m3 and dénote pairs (i, j) by a, ~3, etc.
If a = (1,2), for example, = + ~~==(~i+~2)’~+~B

, mlxl + m2x2
~ = ~2 - = ~3 - .xa=x2 -x~,y«=x3 - 

ml + m2 
.

The conjugate momenta are denoted by pa.
Note that for a # /3, the change of variables is given by

(1.2) )
YI~ t3 t4 YiX

where t2 = + 1 and ti = /3) # 0 for 1 = 1, 3, 4.
Yt = = and H2([R6) are the Sobolev-spaces of order 0

and 2 respectively. °xa A
The free Hamiltonian Ho is given for each a by the operator - 

on the domain 2ma 2na

The pair potentials Va = Va(xa) are assumed to be real-valued functions
3 x

in Mf for some /? &#x3E; -, s &#x3E; 1 and S -dilation-anal tic for some a  ~ .m S p 2~ 
a y 

-2

_ Moreover, we assume E Mf for every ç E ( - a, a).

Vol. 43, n° 4-1985.



374 E. BALSLEV AND E. SKIBSTED

The Hamiltonian H is defined (cf. [13 ]) through the quadratic form

and similarly for the operators Hcx = Ho + Vcx.
{U(p)}~+ now denotes the dilation group on ~f and the dilated

operators and are defined as in [9 ].
As in the 2-body case we then fix z = 0  ~p  a and omit the

variable ~ using the short-hand notation

for’ in the resolvent sets of the various operators, indicated above.
To further simplify the presentation we assume that each two-body

operator has exactly one 1-dimensional, negative eigenvalue ~,«. The
extension to the general case is straightforward (cf. [3 ]), the basic estimates
are the same. The eigenfunction of h03B1 corresponding to 03BB03B1 is taken to be

4&#x3E;0153 = 03C603B1(03C6), where 03C603B1(0) is a real normalized eigenfunction of - 0394x03B1 + 
associated with the eigenvalue ~,«. 

’ 2m«
We let 4 = = 

The relative free Hamiltonian ’r 2 e - a. 

+ Åa. in ha. has resolvent

The essential spectrum of H is ~ ~ + e - 2 ~~~ ~, where ~, ranges
A

over zero and all discrete eigenvalues and resonances of the two-body
operators. The non-real discrete spectrum of H, denoted by is confined
between the half-lines { 03BBe + IR+ } and {03BBe + }, where 03BBe is the
smallest negative threshold.
To prove boundedness of along cuts associated with two-body reso-

nances we have to make the restrictive assumption that these two-body
resonances are simple poles of the corresponding resolvents. We shall
call cuch poles simple resonances.
The set ~ is identical with the set of singular points of the symmetrized

l’lnstitut Poincaré - Physique theorique



375BOUNDED NESS OF TWO- AND THREE-BODY RESONANCES

Faddeev matrix A(Q, defined as follows (cf. [4 ]). Here we restrict the dis-
cussion to the negative eigenvalues ~,a. The case of thresholds defined by
simple resonances is very similar.
We decompose R~(0 as

where

We factorize V« as V« = Aa.Ba., Aa = sign Va, Ba. = 2. Set for {3

We introduce the auxiliary spaces ~f and defined by

It will be proved in Lemmas 3 . 3-3 . 6 that if Va E Mf then A(0 E 
for ( E Using this we shall now sketch a proof of the fact that 
is the set of singular points of 1 + A(~).

LEMMA 1. 2. - Assume that V E Mp for some &#x3E; -, s &#x3E; 1 and all 0153,

and Then Q and N(1 + A(Q) (A(03B6)~B(H)) are
isomorphic via the maps .

where

and

where

Vol. 43, n° 4-1985.



376 E. BALSLEV AND E. SKIBSTED

Proof 2014 It is easy to see that L maps H 1 into H and K maps H into H 1.
The algebraic verification that E + A(0) and E %(H - 0
as well as KL03C8 = 03C8 and LKC = C is carried out in [4 ].
For Va E Mp we denote by Val and Va2 functions chosen in accordance

with Lemma 1.1, such that

For 8 &#x3E; 0, 0  ~p  a, we define the half-planes SE and S _ by

In the 3-body case we need the following assumption on the 2-body
eigenfunctions Øa and resonance functions We formulate this as a
condition on the two-body system with potential V for any eigenfunction ø
associated with a discrete eigenvalue.

CONDITION A. - For some C, k &#x3E; 0

If V is 0-compact, condition A is always satisfied. In this case 03C6 E 
and the standard boost-analytic argument yields c 

for k small, positive. Since for some p ~ 2, s &#x3E; 1 implies
we have

(i ) If V E Mp for some p &#x3E;_ 2, then A is satisfied for all discrete eigen-
functions and resonance functions.

In the case of negative eigenvalues, let I be a closed interval contained
in ( - a, a); then clearly k = ki and C = CI can be chosen such that

where ~(~p, x) is the dilation-analytic extension of the eigenfunction 4&#x3E;.
The same holds with suitably chosen I in the case of resonance thresholds.

If V ls only known to be m Mps f o r some p, 3  p  2 , s &#x3E; 1 , then VIf V is only known to be in M; for some 2  p  2, s &#x3E; 1, then V

is 0394-form-compact, 03C6 E H1(R3), and it is not known whether A holds
in general. For radial potentials, however, one can prove the following
result using ordinary differential equations techniques.

. 

3
(ii) If V is radial and V E Mp for some p, 2  p  2, s &#x3E; 1, then every

discrete eigenfunction 03C6 satisfies condition A. Moreover, a uniform estimate
as above can be obtained for the dilation-analytic extension ~(~p) of 4&#x3E;.
Similar results hold for resonance functions.

Annales de l’Institut Henri Poincare - Physique theorique



377BOUNDEDNESS OF TWO- AND THREE-BODY RESONANCES

For non-radial potentials the following condition is given in [11 ],
vol. IV, p. 200:

(iii) If VEL 1 + Lq for some q, 2  q  3, then A is satisfied for all

discrete eigenfunctions. We note that the proof also works for resonance
functions.

2. THE TWO-BODY CASE

The main result is the following

THEOREM 2 .1. - Suppose V = for some s &#x3E; 1. Then the

set ra is bounded.
We introduce four Lemmas and then prove Theorem 2.1.

LEMMA 2.2. - For every s &#x3E; 1 there exists K = K(s), such that

Proof 2014 This follows from [11 ], III, p. 443, keeping track of the’ -depen-
dence of the various constants at all stages of the proof of this Lemma.

LEMMA 2 . 3. - For every s &#x3E; 1 there exists KS  oo such that

Proof A straightforward exercise using the decomposition

LEMMA 2 . 4. - Suppose f, g E R. Then

Proof. See [12 ] ( 1.10, p. 14).

LEMMA 2 . 5. - Suppose s &#x3E; 1. Then

Proof 2014 Let G &#x3E; 0 be given. Since

Vol. 43, n° 4-1985.



378 E. BALSLEV AND E. SKIBSTED

we have for ~2 &#x3E; 0

We now estimate each of the four terms on the right hand side of (2 .1 ),
where 03B41 and 03B42 have to be chosen successively. First choose 03B41 &#x3E; 0 such
that (KS given as in Lemma 2.3)

Then, because  5t, ~V03B411~1 2 L11-s03B41 21, we get using at the last
step Lemma 2.4

Also

Now choose ~2 &#x3E; 0 such that

Then

The estimates (2 . 2), (2 . 3) and (2 . 4) hold true for all ~. Finally, by Lemma 2 . 2
there exists Ro &#x3E; 0 such that

Annales de l’Institut Henri Poincare - Physique " theorique .



379BOUNDEDNESS OF TWO- AND THREE-BODY RESONANCES

and hence

and the Lemma is proved.

Proof of T heorem 2.7. 2014 By Lemma 2 . 5 there exists Ro &#x3E; 0 such that

Consequently (cf. (1.1)) the set of resonances is confined to { ( Ro }.

REMARK 2.6. - If V(z) is known to have an analytic continuation
from Sa to Sb for some b &#x3E; a, then Theorem 2.1 is well known [6 ]

REMARK 2.7. - Suppose we drop the assumption that V is Sa-dila-
tion-analytic and only require that V be Sa-dilation-analytic. Then Theo-

rem 2.1 is not true in the sense that r = is bounded. For a counter-

example we refer to [14 ]. opa

Also an assumption like seems necessary. For instance if

it is only known that H -1 ), then we do not expect Theorem 2.1

to hold true. (We believe that V(r)=r03B2e-r03B1, -1 203B20, 2 303B2+4 3&#x3E;03B1&#x3E;1,
represent counter-examples [ 14 (4.4)). 

2

REMARK 2. 8. - In the case V E R, Lemma 2. 5 is well-known (cf. [10],
p. 274-276 and [12 ], Theorem 1.23). The Lemma implies that the

first Born approximation is good in the high-energy limit, that is

3. THE THREE-BODY CASE

We formulate the main result :
3

THEOREM 3.1.2014 Assume that Va = E Mp for some p &#x3E; 2, s &#x3E; 1,

(  a and all oc. Let E &#x3E; 0 be given and suppose that every two-body
eigenfunction 03C603B1 associated with an eigenvalue 03BB03B1 S - 8 satisfies A. Then
~~, _ E is bounded.

If all two-body resonances in S, are simple and every two-body eigen-
function ~a associated with a positive eigenvalue ~,a &#x3E;- 8 or a resonance

~,a E S~ satisfies A, then is bounded.

Vol. 43, n° 4-1985.



380 E. BALSLEV AND E. SKIBSTED

The proof consists in showing ---+ 0 for ( ---+ oo in 

and Sg respectively. We make the simplifying assumption of Section 1,
that each two-body system has exactly one 1-dimensional eigenvalue in S-g.
The following Lemmas (to be proved later) contain the basic estimates
of the operators (a * ~3) given by (1.3), constituting the Faddeev
matrix ( 1. 4). Using these Lemmas we shall prove Theorem 3.1, focusing
on the case of S-g. The case of Sg is then briefly discussed.

REMARK 3.2. - In the case of negative eigenvalues, the estimates

of ~ A 2«() II can be obtained uniformly for 03C6 in a closed interval I ~ (0, a),
provided all have decompositions + with 
continuous Lp-valued and a continuous L~-valued
function on ( - a, a). We shall discuss this in Section 4. This extends in an
obvious way to the case of simple resonance thresholds.

LEMMA 3 . 3. - 

and

Moreover

LEMMA 3.4.

LEMMA 3.5.

Moreover

LEMMA 3.6.

Moreover

Proof of Theorem 3 .1. - By Lemma 1.2 for any resonance /) there

exists 0+DeN(l+A(~))(A(~)6~(i’)). Then and

Annales de Henri Poincaré - Physique theorique



381BOUNDEDNESS OF TWO- AND THREE-BODY RESONANCES

By Lemmas 3 . 3-3 . 6 there exists Ro &#x3E; 0 such that ~ A 2(() ~B(-s)  1 for

&#x3E; Ro. Hence 1 - A2(() is invertible and there are no reso-
nances for ( E S-~ ~ ! &#x3E; Ro.

In the general case, where each ha may have possibly infinitely many
eigenvalues accumulating at 0, the proof is similar. For G &#x3E; 0 there is a
finite number of finite-dimensional eigenvalues of the operators ha below - G.
For each x we choose an orthonormal basis of the total eigenspace with
energies below -~ and obtain a Faddeev-matrix containing as elements
a finite number of operators of the type treated in Lemmas 3 . 3-3 . 6 (cf. [4] ]
[5]). Also the case of Se, where the cuts start from two-body resonances
or positive eigenvalues, is treated in a very similar way. The assumption
that all two-body resonances in Se are simple is required to prove the ana-
logues of Lemmas 3 . 3 and 3. 5. It is clear from the proofs of Lemmas 3 . 3
and 3 . 5 (to be given later) why this assumption is necessary.

REMARK 3.7. 2014 It is not difficult to sharpen the results in Lemmas 3.3,
3 . 5, 3 . 6 as follows :

(Lemma 3. 3)
(Lemma 3. 5)
(Lemma 3.6)

Using these facts we find that A2(() E ~(~) and hence the singularities of

( 1 + A(0)’~=(1-A(0)(1-A~(0)’~ are isolated poles in ~B ~ ~,+ e- 2i~~+ ~
/L

where ~, ranges over 0 and all discrete eigenvalues of two-body operators
This of course is well known [7~].

For the purpose of proving Lemmas 3.3-3.6 we need the following
Lemmas (3.8-3.16).

LEMMA 3. 8. - For every s &#x3E; 1 there exists K = K(s) such that

Proof. 2014 Compare with Lemma 2. 2. We use the proofs of Lemmas 3, 4,
5 in [77], vol. III, p. 442.

LEM MA 3.9. 2014 Let s &#x3E; 1, ~ &#x3E; - and v « e be g iven. Then

Proof 2014 Let E &#x3E; 0 be given. We choose 5 &#x3E; 0 such that

ðt  2~03C0K-1s (Ks defined in Lemma 2 . 3) .

Vol. 43, n° 4-1985.



382 E. BALSLEV AND E. SKIBSTED

Since

we have

Because ~ va 1 ( .  03B4, we have for all 

Furthermore, by Lemma 3.8 there exists Ro &#x3E; 0 such that

Hence, &#x3E; Ro we have for all y E ~3

By (3.1)-(3. 3)

and the Lemma is proved.

LEMMA 3.10.

Proof 2014 In momentum representation

and

de l’Institut Henri Poincaré - Physique théorique



383BOUNDEDNESS OF TWO- AND THREE-BODY RESONANCES

LEMMA 3.11. 2014 Let Then

Proof. - Fubini’s theorem and Cauchy-Schwarz’ inequality.

LEMMA 3.12 8 . 2014 Assume that E n L 1(1R3) for some p 2
and all oc. Then E ~(~f) and there exists Cp  oo (depending
on p and m~) such that

for ~ ~ e - 2 ~~~ and all pairs (x, /3.

LEMMA 3.13. - Let V« and Cp be as in Lemma 3.12 and assume

Then

Proof -

where we have used Lemma 3.12.

LEMMA 3.14. - Let s &#x3E; 0, s &#x3E; 1 and /~ be given. Then

1 1
Proof By a result of Agmon [1] ] we have for some b satisfying -  b  -

and a constant C I &#x3E; 
4 2

Moreover, introducing s(0 = 

Vol. 43, n° 4-1985.



384 E. BALSLEV AND E. SKIBSTED

Since inf ~(- E sin 2 &#x3E; 0 and 2b s &#x3E; 1 we conclude from 3 . 4
E 

~P &#x3E; 

2 
&#x3E; ( )

and (3.5), using Lemma 2.2 (with 1R3 replaced by ~6) that the Lemma
holds true.

3
LEMMA 3.15. - Let E &#x3E; 0, p &#x3E; ;~, s &#x3E; 1 and /3 be given. Suppose

Then E ~(~f), and

Proof Since

for all pairs y and every 5 &#x3E; 0, we have for all 5~~ &#x3E; 0,

Let 80 &#x3E; 0 be given. First choose 03B41 &#x3E; 0 such that

where 81 = 8 sin 2p = inf 8(’) and Cp is given in Lemma 3.12.

Then by Lemma 3.12

Also, by Lemma 3.13

Now choose ~2 &#x3E; 0 such that

Then by Lemma 3.13

Annales de l’Institut Henri Poincaré - Physique theorique



385BOUNDEDNESS OF TWO- AND THREE-BODY RESONANCES

Finally, by Lemma 3.14 there exists Ro &#x3E; 0 such that

Hence

By (3. 6)-(3.10)

and the Lemma is proved.

LEMMA 3.16.2014 For 8, , and R° (~) as in Lemma 3 . 3, 
and there exists K such that

Proof. 2014 By ( 1.1 )

where ~(0 = valid for all ( such that ( 1 + q(~)) -1 exists.
By Lemma 2. 5,

Together with the assumption that ha has exactly one 1-dimensional
eigenvalue 03BB03B1  0, (3 .11 ) and (3 .12) imply that

where

We write ra(~) as

It is easy to see that the pole term of ra(~) satisfies

For - 03BB03B1|  2014, 0 i s g i ve n by the norm-convergent integral

Vol. 43, n° 4-1985.



386 E. BALSLEV AND E. SKIBSTED

Hence " is analytic for |03B6 2014  2014. This im p lies that

By (3.13), (3.14) and (3.16)

In momentum representation

and hence for all ~ E S-g

The Lemma follows from (3.17) and (3.18).
We now proceed to the proof of Lemmas 3.3-3.6

Proof of Lemma 3.3. 2014By the 2nd resolvent equation

Because by Lemmas 3.15 and 3.16,
it follows from (3.19) that E ~(~f). Furthermore, by Lemma 3.15

and by Lemma 3.16

Hence by (3.19), since satisfies condition A,

and the Lemma is proved.

Proof of Lemma 3.4. - First we prove that BJ &#x3E; ~P).
Let Then by (1. 2) (assuming for simplicity t2 =1; t2 = -1 is

similar)

Annales de l’Institut Henri Physique theorique



387BOUNDEDNESS OF TWO- AND THREE-BODY RESONANCES

where K2  oo by Condition A. Hence ~P).
We shall now prove that BJ ~~ &#x3E; ~E ~(~~, _ S, ~). Let Then

We set

By Condition A, C~  oo and hence

Furthermore, we set

Then for 

Hence

where we have used Condition A.
From (3. 20)-(3.22) we obtain

and the Lemma is proved.

Proof of Lemma ~. ~. 2014 Using Lemma 3. 3 it suffices to prove

Vol. 43, n° 4-1985.



388 E. BALSLEV AND E. SKIBSTED

and

Because

where ga := E by Condition A, we obtain from Lemmas 3.3
and 3 .11

We now prove the last part of the Lemma.
From Lemma 3.10 we obtain

where

(note that even though V03B103C603B1 may not lie in this
follows from + L2, since the operator is convolution by a func-
tion in L1 n L2).
By ~~ 0 ~~ -~ C we shall understand the function given by

First we prove that

and

Clearly and from the proofs of Lemmas 3.12-3.15
we find that

Let F E EÐ Then for S-,, ~ ~ + (we assume
t2 = 1)

where (setting x = 
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By Lemma 3 . 9 K(0 --+ 0 for ( --+ oo in S _ EB f ~a + 
From (3.23)-(3.25) and Lemma 3.11 we find that

and

This concludes the proof of the Lemma.

Proof of Lemma 3 . 6. 2014 To prove that r03B1(03B6)  03C603B1 V03B1| 03C603B2&#x3E; E B(h03B2, h03B1)
we remark that by Condition A ga:= E and hence it
suffices to prove that

Let be given. Then (assuming t2 = 1)

We use Fubini’s theorem and Cauchy-Schwarz’ inequality and find that

Hence ’ we have ’ proved o (3.26).
To prove 

" that r(X(’)  we remark that by
Condition A

Let f ’ E be given. Then

where ga is given by (3 . 27) and F : E9 --. C is given by

We let G : -~ C be given by

Clearly,

and by Condition A there exists C  oo (depending on mi and ~~) such that

Vol. 43, n° 4-1985.



390 E. BALSLEV AND E. SKIBSTED

The right-hand side of

is now estimated using Fubini’s theorem and Cauchy-Schwarz’ inequality
as follows :

where

We now use (3.28) and find the estimate

Hence by Lemma 3 . 8. Moreover,
since by the same Lemma K(0 -~ 0 for ~ -~ oo in S-eB {Å(X + 
we obtain

for ~ -~ 00 in 
The Lemma is proved.

4. UNIFORM ESTIMATES

LEMMA 4 .1. - Let I be a closed interval contained in [ - a, a ]. Assume
that for every ({J E I, V( ({J) has a decomposition

such that

and ..and 
is a continuous map from I in to Lp and from I into L;

while
V2(p) is a continuous map from I into L~ .

Assume moreover that for every 03C60 E I there exists 03B4(03C60) and F03C60 E Lp n Ls
so that
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Then for every ~ &#x3E; 0 there exists CI(ð) such that for all ~p E I

where

and

Proof 2014 Let ~po E I. Then by the proof of Lemma 1.1 there exists N
such that

where

By the continuity of and there exists ~ &#x3E; 0 such that for

and similarly with Lp replaced by Moreover, for I ({J -  ~(~po)~

A compactness argument concludes the proof.

THEOREM 4 . 2. - Let I be a closed interval contained in (o, a) and assume

that for some p &#x3E; 3 2 , s &#x3E; 1 all a and ~p E I the functions have decom-

positions as in Lemma 4.1. Assume moreover, that A is satisfied uniformly
for ~p E I. Then for every G &#x3E; 0 the set of resonances is bounded.

(pel

Proof 2014 The estimates of ~A2(03C6 03B6)~ given in Lemmas 3 . 3-3 . 6 can be
obtained uniformly for ~p E I by Lemma 4 .1, the assumption that A holds
uniformly and the fact that E 1 = B sin 203C6 &#x3E;_ D1 &#x3E; 0 for 03C6 E I. We need
only replace K of Lemma 3.16 (used in the proof of Lemmas 3 . 3 and 3.5)
by a constant K1 valid for all ~p E I, II by C1(ð) (Lemma 4 .1), k and C
by kI and C1 (Condition A( i )) and B1 by D1 in the various estimates. We
illustrate this in the case of Lemma 3.16. We first of all note that (3.12)
holds uniformly for ~p E I. This follows from a uniform version of Lemma 2 . 5,
Vol. 43, n° 4-1985. 16
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obtained by estimating the first term in (2.1) by C V V 
and by using in (2 . 3 ), (2 . 4) the trivial estimate 

together with the uniform estimates of Lemma 4.1. In (2.5) we use
Lemma 4.1. It is easy to see that for every R &#x3E; 0, ~) is jointly continuous
in 03C6 and’ for 03C6 E I and’ E S-,, I’  R. It follows that II 0!!  C
for Then (3.13) holds for with C1 replaced by C1,I.
By continuity (3 .14) holds for with C2 replaced by C2,I. Also the
integrand in (3 .15) is continuous in ~p, ~ and " for and

, 
3~

I" - ~! I = 2. This implies (3.16) for with C3 replaced ~31, and

we obtain (3.17) uniformly for from which Lemma 3.16 follows
with K replaced by K1.

We finally discuss the case when the Va are Sa-dilation-analytic, a  -.
We note the following simple fact. 2

REMARK 4.3. - Assume that V is Sa-dilation-analytic and that 
has a decomposition as in Lemma 4 .1 on [ - a, a ]. Then is continuous
on [ - with values in ~(H 1, H -1 ).
The estimates of A 2( ,) are valid for the operator as well as for

0  ~p  a. The interval of Theorem 4.2 can then be chosen such that
I c (0, a ]. The constant Ci(5) of Theorem 4 . 2 can be chosen accordingly,
8 sin 2~) &#x3E; C1 &#x3E; 0 for ~p E I, and we obtain the following result.

THEOREM 4.4. - Assume that for all a, V« has a decomposition as in
Lemma 4 .1 on [ - a, a ]. Assume moreover that Condition A holds uni-
formly on [ - a, a ]. Then for every 8 &#x3E; 0 and every closed interval I c (0, a]
the set of resonances ~,-s is bounded.

cpEI

REMARK 4.5. - The condition of Lemma 4.1 is satisfied, and V is
Sa-dilation-analytic, if V satisfies the following condition, expressed in
polar coordinates. 

_

There exists an function V(z), continuous on Sa and ana-

lytic in such that for some p &#x3E; - 2

for some t &#x3E; 1

and for 
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In this case V(~p), E Sa, is given by

Moreover

where

REMARK 4.6. - The statement of Theorem 4.2 can be expressed as
follows. For any two consecutive negative thresholds ~,1 and ~,2, consider
the sheet F).1 ,).2 of the Riemann surface of dilation-analytic continuation

attached to (~,1, ~, 2) and given by ff’Ä,.Ä2 = U U { ~ + e - 2 i~ ~ + ~ .
Then the set of resonances on ~ ~,,,~,2 is bounded on the subset given by
0  ~ _ ~p  a - b for any (5 &#x3E; 0. Similarly for Theorem 4 . 4 for 0  b _ ~p  a

if a  - .
2

REMARK 4.7. - Using the well-known fact that y-o(0 has continuous
boundary values on R+ in L2 _S ), it is easy to show that A(Q has conti-

2 2
nuous boundary values A+(() in on all non-zero cuts. The estimates
of Lemmas 3 . 3-3 . 6 are then valid for A 2(,) including the boundary-values
in each strip. Singular points are identical with resonances on the

respective sides of the cut [4 ]. Thus Theorem 3.1 extends to include reso-
nances on the cut.

REMARK 4. 8. - Replacing L~ by L6 for some o- &#x3E; 0, we can prove
II A 2(,) 11~(.1f) ~ 0 for , ~ oo, keeping dist (~ ~e(H)) &#x3E;- c &#x3E; 0. This yields
an improvement of the results of [3] ] in the three-body case allowing
r-2+~-singularities instead of the r-1+~-singularities of [3 ] .

5. BOUNDEDNESS OF RESONANCES ALONG
THE ZERO-CUT

In this section we shall prove that if the pair potentials decrease roughly
speaking faster than r - 2 as r ~ oo, then the set of resonances is bounded
also along e-2~~(~+. Finally we establish the uniform estimates up to ~p = 0.

DEFINITION. 2014 We define S ± and by
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THEOREM 7C 5.1. 
- Assume that V~ = for some p &#x3E; 3 2 &#x3E; 2,

I ~P I _ a  - and all x. Suppose that every two-body eigenfunction ~~

associated with a negative eigenvalue satisfies A. Assume furthermore
that for all a, Then is bounded.
Assume moreover that the number of two-body resonances in S + and

the number of positive eigenvalues of ha. are finite for every oc, that all two-
body resonances in S + are simple and that every two-body eigenfunction
associated with a positive eigenvalue satisfies A. Assume that there are
no two-body resonances on e - 2 i~~ + . Then is bounded.

Proof 2014 This follows in the same way as Theorem 3.1 from the Lem-
mas 3 . 3-3 . 6 with replaced by S+. Lemmas 3 . 3 and 3 . 5 are conse-

quences of Lemmas 5.4 and 5. 5, proved below.

REMARK 5 . 2. - Va. E Mp (p, s as above) implies Lp n Lq for
33. .

-  q 
 

-. 
It is well known, that under this assumption the number of

negative eigenvalues of each h« is finite (cf. [12 ], p. 86). Under the slightly
stronger assumption that ( 1 + it is proved in [7],
Prop. (3.5) that the number of positive eigenvalues is finite. Generically
the number of resonances (and positive energy bound states) of each two-
body problem is finite. This follows from the existence and compactness
of |V03B1|1/2r03B10(0)V1/203B1= 1 in (L2(R3x03B1), as noted by
A. Jensen [9 ]. 

LEMMA 5.3. - (Iorio-O’Carroll [8], Ginibre-Moulin [7]).
(1) is bounded and uniformly Holder-continuous in 

for’ E C, including the boundary values on 
(2) is bounded and uniformly Holder-continuous in 

for’ E C, where yj = 

Proof 2014 The proof is given in [7] for the two-body problem; as indicated
there ( 1 ) is proved in the same way, and this also holds for (2).

LEMMA 5.4.

Proof 2014 Let G &#x3E; 0 be given. By Lemma  5. 3 we can choose ~ &#x3E; 0 such
that for 0 and t 
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By Lemma 3.15 we can then choose K = K(~) &#x3E; 0 so that

hence

so

Similarly we prove this in S + , and (2) is proved in the same way.

LEMMA 5.5. -

and

Proof 2014 This follows from Lemma 5.4 and Lemma 3.16, which can
be proved also for E = 0. Here we use the fact that q(~) has continuous
boundary values in ~(h) on and that these boundary values have
no singular points on There are no zero-energy resonances by
assumption. The fact that there are no singular points on e - 2 t~ (~ + is proved
in [2] (note in the case of S + that by assumption e - 2 i~ (1~ + does not contain
two-body resonances).
We now proceed to discuss the extension of the uniform estimates of

Section 4 to include the zero channel as well as (p near 0.

THEOREM 5 . 6. - Assume that Va = E MS for some p &#x3E; 
2, 

s &#x3E; 2,

and all (x, and that the conditions of Lemma 4.1 are satisfied for

(p E 1= [0, a ]. Suppose that every two-body eigenfunction ~a associated with
a negative eigenvalue satisfies A uniformly for 03C6 E I. Assume furthermore
that for all a, ha has no zero-energy resonance for any (p (or, equivalently,
for one and no positive eigenvalues. is bounded.

q&#x3E;EI

Assume moreover that there exists b E (0, a such that there are no two-

body resonances for [0,b] (This holds generically). Then U ~+
is bounded. 

Proof 2014 We sketch the proof in the case of the proof for is

similar. The proof follows very closely that of Theorem 4 . 2, replacing S _ E
by S- as in Theorem 5.1. A main point to be elaborated further is the
existence and joint continuity of ( 1 + ~))~ in ~p and " uniformly
for 03C6~I and’ E S- ( = S-(p)), where q(03C6, 0 is one of the operators

~)Aa(~p). As noted in the proof of Theorem 5.1 the continuous
boundary values Q on e-2i03C6R+ have no singular points. By assump-
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tion, 1 + 0) is non-singular. Finally the boundary values of q(o, Q
have no singular points by the assumption that h03B1 has no positive

eigenvalues. This implies that (1 + ~(~0)’~ is continuous in ~p and (
for ~p E I, ~ E S-. As in the proof of Theorem 4 . 2 this is used to show that

is bounded for 
Another central points of the proof is to establish

uniformly for (y) E I. This follows as in the proof of Theorem 5 .1, using the
estimates

where -   2’ 3 leadin g to the uniform Holder-continuity in of

03BE)A03B2(03C6) for 03C6 e I and 03B6 e S-.
A slight adaptation of the remaining part of the proof of Lemma 4.2

suffices to conclude the proof of the fact that ~A2(03C6, 03B6)~ ~ 0 oo,

uniformly for (~ e I, from which the Theorem follows.
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