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ABSTRACT. - We show that Dobrushin’s uniqueness theorem yields
an (N(N - 3)) 1 ~2 bound for critical interaction in general N components
rotator models; related calculations show that at least an (N(N - 1))1/2
bound may be attainable in a similar way.

RESUME. - Nous montrons que Ie theoreme d’unicite de Dobrushin
conduit a une maj oration par (N(N - 3)) 1 ~2 de 1’interaction critique dans
les modeles generaux de rotateurs a N composantes ; des calculs voisins
indiquent que la borne (N(N -1))1~2 devrait pouvoir etre atteinte.

INTRODUCTION

In the theory of N components rotator models, the basic estimate of
the critical interaction strength Je is : Jc ~ N (Simon [16 ]. See also [17 ]).
Although this result has been improved in particular models by means
of hard analysis ( [4 ]), it would be interesting to prove it via Dobrushin’s
uniqueness theorem, since this theorem holds in a more general setting
and owns interesting corollaries ( [8] ] [9 ]); the present article is an attempt
in this direction : first, we obtain Je  (N(N - 3)) 1 ~2 for N &#x3E; 3 ; using a
slightly different method, we also obtain
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this last estimate is better only for N = 3, 4 and bad for high dimension.
Nevertheless, we think its proof has a value to suggest how to obtain

(N(N - 1))1/2 and perhaps a little more. These estimates improve
on that given by Levin [10 ], namely N/~/5, for N ~ 3.

NOTATION : in this article it is more convenient to use n = N - 1 as
the dimension parameter.

§ 1. Let us recall Dobrushin’s method. We denote by I a countable
set (of sites) and by (S, r) a separable metric space; for each finite subset L
of I and each configuration y E SI-L, a probability measure I Y)
on SL is given and the associated Gibbs measures are those probability
measures on SI which admit, for each L, the kernel as conditional dis-
tribution of the restricted configuration XL, under the condition x1-L = y.

Dobrushin’s condition uses the natural distance between probability
measures induced by the distance r (Fortet, Kantorovitch, Vasershtein,
see [6 ]); strictly speaking, R is defined only on the convex set of probability
measures v on S such that, 0 denoting some fixed point in S, r(O, y)v(dy)  00

(a condition which is irrelevant if S is compact) by :

is the Lipschitz norm of the function /:

The dependence coefficient of site i under sitey, 03C1(i,j), is defined as the supre-
y), {i}(.| I yj) when the configurations y, y coincide

off j; if we put p = sup p( i, j), Dobrushin’s theorem formulates as follows :
ieI ¿

j

THEOREM 1.1. - If p  1, there exists at most one Gibbs measure y

such that sup r(o, xi)y(dx)  00. ..

Here we aim to apply this result to rotator models: S is the unit sphere Sn
with its natural (geodesic) distance r and ,uL takes on the following form:

Poincaré - Physique theorique
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(6n denotes the uniform measure on Sn) normalized by Z into a probability
measure and

where J is a symmetric function on I x I which vanishes on the diagonal

(we may also add an « external field » without altering our
V~ feL

results). We put J = I and define as the supremum

- j .

of numbers M such that unicity holds in every n-dimensional rotator
models such that J  M.

For each vector let v(h) be the probability measure on Sn,
the density of which is proportional to x  exp (x . h) ; let us denote by
var ( f, v) the variance of a function/with respect to a bounded measure v,
i. e., with respect to the proportional probability mesure; our starting
point is the following :

LEMMA 1.2. - Let C(n, h) be the best constant in the inequality

where f is an arbitrary Lipschitz function on S", and C(n) = sup C(n, h).
Then ((n + 1 )~C(n)) 1 ~ 2. 

h

As indicated in [10 ], we shall use a basic result of Dyson, Lieb and
Simon [15]:

THEOREM 1. 3. - For any vectors hand z, the function z on S", y -~ z . y

satisfies

Proof of 1 .2. - Let K, z2, ~ be respectively a real number, unit vectors
and a vector. Let us prove the following inequality :

We consider a minimal geodesic z(t) from zl to Z2, parametrized by arc-
length ; a straightforward calculation gives for an arbitrary Lipschitz
function f

(this covariance being calculated with respect to v(Kz(t) + Q); from
the Schwarz inequality, ( 1 ), (2) and I = 1, we may maj orize by
(C(n)/(n + 1 )) 1 ~2 ~ ( f) and integration in t gives (3).
Vol. 44, n° 1-1986.
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To finish the proof it suffices to remark that the « a priori spin distri-
bution » ~~i~( . ~ y) is, as a function of y~, of the form + 0 where

K = - J(i,j) J(i, therefore (3) yields

and from theorem 1.1 follows uniqueness when J  (n + 1)1~2(C(n))-1~2.
-

§ 2. USE OF INEQUALITIES OF POINCARE’S TYPE

Let us consider the best constant x(n, h) in the following inequality :

say for it is well-known that this constant is the inverse
of the least non-zero eigenvalue of the self-adjoint operator of L2(v(h)),
/ -~ 2014A/’2014 grad (U).grad (f) with U( y) . = h.y; in particular, equality
in (4) is obtained with at least one non-zero function. For h = 0 the

operator reduces to Laplacian and 0) = 1/~. Theorem 3.1 below suggests
that /(~~)~/(~0), an inequality which would yield J~(~(M+1))~;
an easy way to approach this conjecture is to use the following estimate
of Brascamp-Lieb ( [3 ]) :

THEOREM 2.1. - If W is a strictly convex ~2 function on ]a, b [ such .

that exp ( - W(t )) vanishes at a and b, then

where

Let us sketch a pedagogical slight variation of the original proof : we
may always suppose Z = 1. We have :

Schwarz’s inequality gives us the following inequality

Annates de Henri Poincaré - Physique théorique
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which we insert- in (5); using Fubini’s theorem, it suffices to show :

and this is immediate from integration by parts. -
For a we denote by pa,n or simply pa the probability on (-7T/2, 

the density of which is proportional to cosn-1 (0) exp (a sin 0).

LEMMA 2.2. - For n &#x3E; 2, and non 

Proof 2014 By the change t = sin (0) we have to estimate the variance
of t -~ ~ (arc sin (t )) with respect to the measure

elementary calculations show that 2 .1 applies and yields :

THEOREM 2 . 3. - For any ifn &#x3E; 2, h) ~ (n - 2) -1.
Proof Let us consider the axis defined by h as a south-north diameter;

we denote by o and ~p the corresponding latitude and longitude; 0e[-7r/2,
7T/2]; ~ E is defined as follows : we fix a bijection from the parallel Se
at latitude 8 onto So = by shift along meridians; the distribution law
of o with respect to v(h) is pa with a = ~ h ~ and the conditional law of ~p
when 9 is fixed is the uniform law on Sn -1; hence, like in [3 ], we have :

where

We choose for ~’ a non-constant function which realizes equality in (4).
From lemma 2 . 2 and Poincare’s inequality on S""B we get

Vol. 44, n° 1-1986.
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we use Jensen’s inequality in first integral and get

we have used strict inequality in 2 . 2 (and in (n - 2)  (n - 1 )) and

COROLLARY 2.3. - The critical interaction Jc is no less than ((n + 1)
(n - 2))~.

Proof. 2014 Yhe space of B1-Lipschitz functions is dense in the space of
Lipschitz functions; so C(n, h) ~ h)  (n - 2)-1; thus C(~)~(~-2)’~
and we return to lemma 1.2. tt

Remarks. - 1) h) is a continuous function of h which tends likely
to zero when h ~ I --+ oo ; the same proof should give strict inequality.

2) Roughly speaking, log-concavity estimates are accurate in high dimen-
sions : this is not surprizing since the measure 6n behaves then like a Gaus-
sian and the situation becomes similar to that of [14 ].

§ 3. USE OF LIPSCHITZ NORMS

In what follows we shall work with inequalities of the same type as (1).
Let us shorten the notation var (Identity, v) into var (v).

THEOREM 3.1. - The function a --+ even and decreasing
0, for any real 1.

The parity statement is obvious; to prove the other let us recall a classical
probabilistic inequality (Chebychev, generalized by Preston [7~] ] for

F. K. G. inequalities).

LEMMA 3.2. - Let pl and p2 be two probability measures on an inter-
val I with positive densities gl, g2; in order that P2 may be stochastically

greater than p 1 i. e. fd03C11  f d p2 for any increasing function f) it is
sufficient that : B J J / 

_

Annales de l’Institut Henri Poincaré - Physique ’ theorique ’
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Proof theorem 3.1. We have

Put ( y - x)/2 = u ( y + x)/2 = v ; then

By using symmetries, if t = (7c/2)-M for u &#x3E; 0, we get

By lemma 3.2, since (t - 7~/2)~ decreases we only need to show that for
0 ~ ~ s  t, a ~ is increasing; it is sufficient to prove

Let us write I as a double integral:

where

We remark that ~(v, w) &#x3E; 0 if w  v, since tanh is increasing; hence the
part of I coming from the domain positive; the other
part may be written :

Vol. 44, n° 1-1986.
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In the new domain of integration, w) ~ 0 ; on the other hand

~(w,u); indeed a simple derivative calculation implies :

(cos (2v) - cos (2t ))/(cos (2w) - cos (2~)) ~

Therefore to finish the proof it is sufficient to show ~F(r, w) + t~) ~ 0;
denoting 2 sin (s), 2 sin (t ), sin (w), sin (v) respectively by x, y, X, Y, we have

,

yY sinh (ayY) cosh xX sinh (axX) cosh (ayY) +
+ yX sinh (ayX) cosh (axY) - xY sinh (axY) cosh 0.

We expand in powers of a; the coefficient of am cancels for m even and,
for m odd, we get up to a positive factor, owing to the formula

This coefficient is non-negative : if we set A = Y/X,, a = y/x, we get up to
a positive factor :

if A  (x all terms are non-negative; if not, we note that Ax + 1 A + x
and A03B1 2014 1 A - oc from A  1, oc 1. -

- Theorem 3.1 is also valid for 0  ~ ~ 1; similar calculations
have to be done with the new integration variable z = u/~.

So the maximum of var is var and we call it ~.

COROLLARY 3.3. - For any Lipschitz function g CM (- 7C/2, 7C/2)
var (g, and vn is the best constant in this inequality.

Proof. - We write one more time var (g, 03C1a) as a double integral to get
var (~ var (Id, p.)(J~))’ ~ ~(~(g))’. -

Now we return to the sphere; let us recall the definition of, say, « the
re-arrangement / of a function f, increasing with respect to latitude »:
once a north pole on sn has been chosen, / is characterized by two properties
(except sometimes on negligible sets):

1) f depends only on latitude () and is non-decreasing
2) f has the same distribution function asf: r(/&#x3E; t) = r(/&#x3E; t).

Annales de l’Institut Henri Poincaré - Physique théorique
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THEOREM 3.4. - If f is Lipschitzian so is f and JL(f) L(f); similarly
f ~ f is a contraction for Dirichlet’s integral.

The first statement is a Corollary to lemma 1 in [2]; to get the second
we may use theorem 2 in [2] as in [12]; see also [7] and its bibliography.

COROLLARY 3.5. - We have C(n, 0) and vn  1/n.

Proof. - By re-arrangement, var (f, (7) is not modified and the Lipschitz
norm decreases; we may consider as a function on (2014 Tr/2, Tr/2) and Corol-
lary 3.3 gives 0) = vn. Poincaré’s inequality on sn yields vn  1/n. )j!

Actually vn can be calculated explicitly:

hence :

finally, we find

THEOREM 3 . 6. - For n &#x3E; 1, C(n) + and therefore

Proof - From compactness with respect to point-wise convergence
~( f )  1 and/(0) = 1}, follows the existence of a function/which

realizes equality in relation (1) of lemma 1. 2 and such that ~( f ) = 1.
Again we use relation (7) above; obviously we also have J~(~) ~ 1; on the
other hand, the Lipschitz norm of ~p ~ f (9, ~p) is not greater than cos (0).
So from (7), 3 . 3, 3 . 5 we get

Vol.44,1~1-1986.
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An application of lemma 3.2 shows that the last integral is maximum for
a = 0, in which case its value is

which is less than 1 since r is log-convex. -
Finally, by analogy with 3.1, one might think that C(n, h) ~ C(n, 0) ;

this conjecture would give (n + 1)l~2vn 1~2 and should be true if equa-
lity in (1) is realizable with a function depending only on latitude (defined
with respect to h).

n=N-1 2 3 4 5 10 ~ 00

A 1.52 2.25 2.96 3.68 7.23 ~ n/.~2
B 0 2 3.16 4.24 9.38 ~ n

~’ 1 1.21 113 4.07 5.06 10.03 ~ n
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