@article{AIHPA_1986__44_2_155_0, author = {W\"uller, Ulrich}, title = {Existence of the time evolution for {Schr\"odinger} operators with time dependent singular potentials}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {155--171}, publisher = {Gauthier-Villars}, volume = {44}, number = {2}, year = {1986}, mrnumber = {839282}, zbl = {0598.35033}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1986__44_2_155_0/} }
TY - JOUR AU - Wüller, Ulrich TI - Existence of the time evolution for Schrödinger operators with time dependent singular potentials JO - Annales de l'I.H.P. Physique théorique PY - 1986 SP - 155 EP - 171 VL - 44 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1986__44_2_155_0/ LA - en ID - AIHPA_1986__44_2_155_0 ER -
%0 Journal Article %A Wüller, Ulrich %T Existence of the time evolution for Schrödinger operators with time dependent singular potentials %J Annales de l'I.H.P. Physique théorique %D 1986 %P 155-171 %V 44 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPA_1986__44_2_155_0/ %G en %F AIHPA_1986__44_2_155_0
Wüller, Ulrich. Existence of the time evolution for Schrödinger operators with time dependent singular potentials. Annales de l'I.H.P. Physique théorique, Tome 44 (1986) no. 2, pp. 155-171. http://archive.numdam.org/item/AIHPA_1986__44_2_155_0/
[1] Theory of electronic transitions in slow atomic collisions. Rev. Mod. Phys., t. 53, 1981, p. 287-357.
,[2] An analog of the RAGE Theorem for the impact parameter approximation to three particle scattering. Ann. Inst. H. Poincaré, t. A 38, 1983, p. 59-68. | Numdam | MR | Zbl
,[3] Remarks on causality, localization and spreading of wave packets. Phys. Rev. D., t. 22, 1980, p. 377-384. | MR
,[4] Integration of the equation of evolution in a Banach space. J. Math. Soc. Japan, t. 5, 1953, p. 208-234. | MR | Zbl
,[5] On linear differential equations in Banach spaces. Comm. Pure Appl. Math., t. 9, 1956, p. 479-486. | MR | Zbl
,[6] Linear evolution equations of hyperbolic type. J. Fac. Sci. Univ. Tokyo, Sec. 1, t. 17, 1970, p. 241-258. | MR | Zbl
,[7] Linear evolution equations of hyperbolic type. II. J. Math. Soc. Japan, t. 25, 1973, 648-666. | MR | Zbl
,[8] Methods of modern mathematical physics. I. Functional analysis. New York, Academic Press, 1972. | MR | Zbl
, ,[9] Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, New York, Academic Press, 1975. | MR | Zbl
, ,[10] Methods of modern mathematical physics. IV. Analysis of operators, New York, Academic Press, 1978. | MR | Zbl
, ,[11] Quantum Mechanicsfor Hamiltonians defined as Quadratic Forms, Princeton University Press, 1971. | MR | Zbl
,[12] Equations of Evolution, Pitman, 1979. | MR
,[13] Existenz von Propagatoren für Schrödinger Operatoren mit zeitabhängigen singulären Potentialen, Diplomarbeit, Ruhr-Universität Bochum, 1984.
,[14] A multi-channel scattering theory for some time dependent hamiltonians, Charge transfer problem. Comm. Math. Phys., t. 75, 1980, p. 153-178. | MR | Zbl
,[15] On the integration of the equation of evolution. J. Fac. Sci. Univ. Tokyo, Sec. 1, t. 9, 1963, p. 397-402. | MR | Zbl
,[16] Time dependent evolution equations in a locally compact space. Math. Ann., t. 162, 1966, p. 83-86. | MR | Zbl
,[17] Functional Analysis, Berlin, Heidelberg, New York, Springer, 2nd. ed., 1968. | MR
,