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Invariant states

on Borchers’ tensor algebra

Jakob YNGVASON

Science Institute, University of Iceland, Reykjavik, Iceland

Poincaré,

Vol. 45, n° 2, 1986, Physique theorique

ABSTRACT. A method is presented for constructing states, invariant
under various groups of space-time transformations, on the test function
algebra for quantum fields. These states are used to determine the inter-
section of the kernels resp. left kernels of all states satisfying either the
locality condition and translational invariance, or the spectrum condition
and Poincare invariance.

RESUME. - On presente une methode pour construire des etats sur
l’algèbre des fonctions d’essai des champs quantiques, qui soient invariants
sous 1’action de divers groupes de transformations d’espace-temps. On
utilise ces etats pour determiner 1’intersection des noyaux (resp. des noyaux
a gauche) de tous les etats satisfaisant soit la condition de localite et l’inva-
riance par translation, soit la condition spectrale et 1’invariance de Poincare.

1. INTRODUCTION

This paper continues the study of ideals and automorphisms of Bor-
chers’s tensor algebra that was begun in [7] ] [2 ]. It is motivated by the
long standing question about existence and abundance of nontrivial

Wightman fields in four-dimensional space-time. One aim of this study
is to determine what linear conditions, besides those explicitly stated in
the Wightman axioms, are implied by the nonlinear positivity condition.
Perturbation theory gives rise to a host of examples of linear functionals
on Borchers’s algebra that satisfy all Wightman conditions, except posi-
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118 J. YNGVASON

tivity [3 ]. It would be a major step towards a solution of the existence
problem if the functionals in these examples could be shown to belong
to the linear span of the Wightman states.

Linear restrictions that follow from positivity have been known for
a long time. An example is the observation in [4] that the Wightman func-
tions are Fourier transforms of measures in each of the difference variables
when they have been smeared in the others. Another example is the conti-
nuity property ( « ~-continuity » ) discussed in [5 ]. By combining these
two conditions a complete characterization of the linear span of transla-
tionally invariant states on Borchers’s algebra satisfying a spectrum condi-
tion was given in [1 ].

In the present paper we partly extend these results to Poincare-invariant
functionals. We do not obtain a complete characterization of the linear
span of invariant states, but derive instead a sufficient condition for a
functional to belong to this linear span (prop. 5.6). Using this, we show
that such functionals are dense in the set of all invariant functionals with

spectrum conditions. We also consider the intersection of the left kernels
of Poincare invariant states with spectrum condition and prove that this
is equal to the spectrum ideal (thm. 5.4). Analogous results are obtained
for the locality ideal and the translation group (thms. 3.1 and 3 . 3), extending
thms. (4 . 5) and (4 . 6) in [2 ], which dealt with the locality ideal alone.
We now introduce some notation and discuss briefly the general mathe-

matical context of these results. Let j~ be a locally convex algebra over C
with a separately continuous product and a continuous, antilinear invo-
lution *. We denote the dual space by ~’ and the cone of positive func-
tionals, i. e. functionals with T(~) &#x3E; 0 for all a, by ~+’. If d
has a unit element D, and T E is normalized such that = 1, then T
is called a state. The kernel of is denoted by K(T), the left kernel
of by L(T), and the kernel of the corresponding GNS-represen-
tation by I(T). Let B be a subset of A+, and consider the following closed
subspaces of d:

The following properties m’e easily verified (cf. [2],
x

i ) K(16) is *-invariant, and if 03A3a*iai E K(16), then + Aai ~ K(16)
for all i. 

i=1
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119INVARIANT STATES ON BORCHERS’ TENSOR ALGEBRA

ii) + The ideal is the largest left ideal contained
00

in K(16) , and if then ai E L() for all i.

i= 1

iii) I() is *-invariant and contained in n c The

ideal is the largest two-sided ideal in and if then

ai ~ I(B) for all i.
It is natural to ask whether the conditions stated in i)-iii) characterize

precisely those subspaces, resp. ideals of j~ which have the form 
resp. or for some ~ c j~~’. For Borchers’s algebra ~ (more
generally for the tensor algebra, or symmetric tensor algebra, over an
infinite dimensional nuclear F-space), J. Alcantara has given examples
which show that this is not the case. This should be compared with the
real version of Hilbert’s Nullstellensatz [6 ], which states that this does
hold for ideals in the symmetric tensor algebra over a finite dimensional
space. An interesting open question is whether the same is at least true
for graded subspaces, resp. ideals in ~.

In this paper ~ consists of positive functionals that annihilate a given
left ideal and are invariant under a group of automorphisms. Let G be a
topological group and -r aT be a representation of G by *-automor-
phisms of j~, such that (-r, a) a~a is separately continuous in -r E G and

a E d. A functional T E j~’ is G-invariant, i. e. = T(a) for all r 6 G,
iff T ~ K G, where

and 0 KG denotes the set of all T e d’ that vanish on 
Let fiJ be a G-invariant left ideal in d. We say that L and G are well

behaved with respect to ’ positivity if

and

One has then also

n ~G1 n ~ +~) _ ~~ := largest two sided ideal contained in 2 n j5f* .
(1.3)

In the next sections it will be shown that ( 1.1 ) and ( 1. 2) hold if G is the
translation group resp. the Poincare group and L is the locality ideal
resp. the spectrum ideal. In an appendix we discuss a series of examples
and counterexamples which show that this is by no means a general feature
of the ideals and automorphisms of Borchers’s algebra.
By duality, (1.1) is equivalent to the statement that the linear span of

21. n A+’ is dense in + L*) n A precise characte-
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120 J. YNGVASON

rization of this linear span is a much harder task, and theorems 3 . 3 and 5.4
below are only a first step in this direction.
The construction of invariant states in this paper is based on an averaging

procedure applied to truncated functionals. This method has been used
to solve a different problem in [7 ], and a brief account of it was

presented in [8 ]. There it is explained why one has to consider the truncated
functionals instead of the functionals themselves, and also why the
Poincare group is easier to deal with in connection with the spectrum
ideal than the locality ideal. We refer also to [9] for a general discussion
and further motivation of these problems. Finally, we want to mention
the remarkable work of Baumgartel and Wollenberg [10 ], who construct
states satisfying parts of the Wightman axioms by entirely different means,
although their method is perhaps not particulary suited for the questions
dealt with here.
The notation used in this paper is the same as in [1] ] and [2 ]. Borchers’s

algebra ~ is the (completed) tensor algebra over Schwartz-space
~1= ~(f~d); its elements are sequences f =( fo, fi, f2, ..., ~0,0, ... )
with f0 ~ C, fm E !/m = J(Rd.m). Addition and multiplication by scalars
are defined componentwise, and the product is the usual tensor product
for functions. The dual space ~’ consists of sequences T=(To,Ti, ... )
with Tn E ~ n, and T(/) = The cone of positive functionals in ~
is denoted 

2. SOME AUXILIARY RESULTS
ON THE SPLITTING OF LINEAR FUNCTIONALS

A functional is called conditionally positive, if T(/* (8) /) &#x3E;: 0
for all f E ~ with fo = 0 [77]. We shall denote the cone of conditionally
positive functionals Note that the components To and T1 are not
involved in the definition. For this reason, conditionally positive, invariant
functionals are easier to construct than invariant states. One can often

simply integrate over the group. This procedure will not work for states
if the group is not compact, because of the constant term To -# 0. In order
to pass afterwards from conditionally positive functionals to positive ones
we need the so-called s-product [12 ]. -

If T, S E ~’ one defines TsS E ~’ by

where the sum ranges over all partitions of {1, ...,M} into two comple-
mentary, ordered subsets (i 1, ... , ik), (including the empty

Annales de l’Institut Poincaré - Physique theorique



121INVARIANT STATES ON BORCHERS’ TENSOR ALGEBRA

set for k = 0 or l = 0). With the s-product one can also form infinite
00 

.

series [12]. If A(x) = 03A3anxn is a power series with radius of convergence r,
n = 0

then A(T)’$:= I converges in J’ for all T E J’ with |T0| I  r.
n=1

In particular we can define exp|ST = E 1/n!. Tn| s for all T. If 0, there
is also an inverse to this:

Tt = log T is precisely the truncated functional of T, and writing
T = exp|s Tt leads to the usual expansion into truncated functions. The
following result is due to Hegerfeldt:

2. 1. THEOREM ( [11 ], 2 .1). - If T E is hermitian, then

exp|T ~ J+’.
We shall need the following elaboration of this theorem:

2 . 2. THEOREM.. - Suppose K is a graded,, linear subspace (i. e.
. f E.~ ~ , fn .for all n) satisfying the condition

’ 

T E K implies exp|s T E K. (A)
The following are equivalent for T E ~’ :

i ) T is a linear combination,
T = (T(1) - T(2») + 1(T~3~ - T(4») with E ~’ n ~1, v =1, ..., 4 .

ii) T is a linear combination of functionals
0

E ~’ +, () %1., v = 1, ... , 4 .

If 0, this is also equivalent to
iii) T t is a linear combination of functionals

v = 1, ... , 4 .

iv) T t is a linear combination of functionals
o 

.

n ~’1, v = 1,...,4.

Moreover, if T varies in such a way that the functionals T(V), resp. 
in one of the cases i )-iv) run through an equicontinuous set, then the func-
tionals T(v), resp. can also in the other cases be chosen from equiconti-
nuous sets.

Proof The essential step is to show iv) =&#x3E; i ). This goes in exactly
the same way as in prop. 2 . 4 in [7 ]. For convenience of the reader we

Vol. 45, n° 2-1986.



122 J. YNGVASON

repeat here the main points of the argument. First, using the fact that all
norms on the finite dimensional space of polynomials of degree n are equi-
valent, one shows that for any ~, E C there are constants C~(~), ~ = 0,1, 2, ... ,
such that for any S E ~’ and /~ E one has

Next, every sequence can be dominated by a sequence of positive type
(i. e. a sequence {03B1v}, s. t. (03B1i+j)i,j = 0, 1, ... is a positive semidefinite
matrix), and by a slight refinement of this statement one argues that there
is a sequence C’(/L) such that for all 

where the sup is taken over all E E [0,1] and all sequences {03B1n} of positive
type with ( an ~  C;,(~,). Here we have used the notation 
if T E J’ and {03B1n} is a sequence of complex numbers. If S is hermitian
and conditionally positive, the right hand side of (2.1) is a monotonous
seminorm on ~ w. r. t. the usual order defined by ~+. Moreover, if S E 
and Jf is graded and satisfies condition (A), this seminorm vanishes on Jf.
From Prop. 1. 21 and 1.15 in [7] it follows that can be written
as a linear combination of positive functionals which are continuous
w. r. t. this seminorm and thus annihilate Jf also. From this it is also
clear that if S runs through an equicontinuous set and ~, stays bounded,
the remain within an equicontinuous set. If is not hermitian,
it is of the form Q + i R with Q and R hermitian in ~~, We may then use
the formula exp ~,S = exp exp and the fact that the s-product
of two functionals in ~ +’ is also in ~ +’ to obtain a decomposition for
exp ~,S. The proof of iv) =&#x3E; i ) is completed by writing

noting that the s-product of two equicontinuous sets is an equicontinuous
set. The other implications are simple: i ) =&#x3E; iii) and ii) =&#x3E; iii) are obvious,
and ii) =&#x3E; iii) follows directly from the formula for Tt. Note that ii) =&#x3E; i )
holds also if To = 0, because T = (T + 1) -1, and 1:=(1, 0, 0, ... ) E ~+’.

In addition to theorem 2. 2, we shall in section 5 make use of a few other
constructions.

2 . 3. PROPOSITION. - Suppose $’ is a graded subspace of J and T a
hermitian functional in J’. Define T(n) _ (o, ... , 0, Tn, 0, ... ). The following
are equivalent:

i ) There exist functionals T1 and T2 E %1. n ~ +’ such that T = T1- T2.
ii) For all n, there exist functionals T1,n and %1. n ~ +’, such that

Annales de l’Institut Henri Poincare - Physique theorique



123INVARIANT STATES ON BORCHERS’ TENSOR ALGEBRA

= T1,n - T2,", and , there is a , continuous ’ (indepen-
dent ofn) such that

with some constants Cn.

Proof. - The implication f) ~ ff) follows immediately from the fact
that any sequence of real numbers, (o~), in particular av = S~ (~ fixed),
is a difference of two sequences of positive type. To prove n) =&#x3E; f) choose
~~ &#x3E; 0, such that

for all v (e. g. ~,n = 2~-)) We define

The sum is convergent because of the estimate for It is clear that

Ti E ~+’ n because every has been multiplied with the moment
sequence ~/~,nv~y - 0,1,... Finally,

2.4. PROPOSITION. - Let T be a positive functionad on ~, h a function
in (9M (polynomially bounded C~-functions on and t2 E f/2 positive,
i. e. t2( f * (8) f ) &#x3E;_ 0 for all f E ~1. Then the following functionals T’
and T" are conditionally positive:

i ) T’n(f1 O ... (8) J n) = Tn(h .f1 Q ,f2 ... fn-1 (8) h* .fn),
ll) O ~ ~ . (8) fn) ’- t2(fl U ,fn)Tn-2(f2 (8) ~ ~ . (8) Jn- 1) .

Proof The first part is clear, because the linear mapping

maps elements of the form g* (8) g with go = 0 into elements of the same
form. For the second part we note that every f_ E ~ with fo = 0 can be
written

with hi E //1, and one has

Vol. 45, n° 2-1986.



124 J. YNGVASON

Now (8) and (8) are both positive semidefinite matrices.
T"( f * (8) f ) is just the trace of their product and hence nonnegative.
For the next proposition we recall the notation

if T E [/’ and { an} is a sequence ~ in C.

2. 5. PROPOSITION. - There is a ~ of positive ’ type, such

that for all T ~ J+’ and ’ f ~ J’

Proof The sequence {03B1n} can be constructed by induction over n
(cf. e. g. [2 ], p. 1070) such that the matrix dominates
I = (b~ J ) in the sense that

for all finite sequences 03BBi E C. But then we have also

for all positive semidefinite matrices M, in particular for M = (8) f~ )).

2 . 6. PROPOSITION . -. There exist sequences {03B1n} and { such that

for every conditionally positive functional T and all f E Q ~n, one has
- 

n=1

Proof - In view of prop. 2 . 5, one has to find a sequence { ~3" } of positive
type such that for all n

with One has thus to

choose 03B2v (and for v ~ 2n + 1) such that { is a sequence of

positive type for all n. But this can be achieved by the induction method
of [2 ], p. 1 070; in fact one has only to let grow sufficiently fast with v.

Annales de l’Institut Henri Poincaré - Physique theorique



125INVARIANT STATES ON BORCHERS’ TENSOR ALGEBRA

3. LOCALITY IDEAL AND TRANSLATION GROUP

In this section we construct Rd-invariant states on !/ that annihilate

the locality ideal ~~. The following simple facts will be used without further
comment.

1 ) Yc + satisfies condition (A) of thm. 2 . 2.

2) is a continuous seminorm on and g E ~, then

is a continuous, translationally invariant seminorm on Jn. If ~.~ vanishes

on Jc and g is totally symmetric this seminorm vanishes also on Jc.
The following theorem is analogous to thm. 2. 11 in [7 ] :

3.1. THEOREM. - Suppose T E n and the following holds

either for T or the truncated functional Tt:

There is a k E and for each n = 1, 2, a constant Cn and a rapidly decreas-

ing continuous function ( 1 ) gn on l~d such that

for all f E ~n. Then T can be written as a linear combination of four func-
tionals in n n ~ +’.

Proof We shall make use of the following lemma, proved in the
appendix in [ 7 ] :
There is a function h E ~((~d) such that

It follows that the functional T’, defined by To = 
is continuous in the topology 1: 00 considered in [2 ]. By thm. 4 . 6 in [2] T’ is
thus a linear combination of functionals ~~~~

e) i. e. decreasing more rapidly at infinity than any negative power of 

Vol. 45, n° 2-1986.



126 J. YNGVASON

Consider now the functionals v = 1, ... , 4, defined by

These functionals are in n and they are also conditionally
positive. Moreover,

and using the invariance of Tn, we have 1

From theorem 2.2 it now follows that T is a linear combination of func-
tionals in ~+’. -

Remark. The hypothesis of rapid decrease of T" or T"t in all direc-
tions in the difference variables is of course for from being necessary. For
instance, truncated Wightman functions have only a polynomial decrease
in time-like directions. It is an unsolved problem to find a complete cha-
racterization of the linear span of n ~ +’, but thm. 3.1 is

sufficient for a proof of thm. 3.3.

3.2. LEMMA. - Jc + KRd is closed.

Proof. Suppose / e Jc + Then T(/) = 0 for all 
In particular, fo = 0 (take T = ( 1, 0, ...,)). Next let X be a function in [/

with x(x)dx = 1, and define

Write fn == gn with

Then ...,~+~)=0, so hnE (cf. prop. 2.1 in [1 ]). Also,

for any S E we have

because the functional f 1--+ ~n)(fa) da belongs to n 

Hence gn E ~~, so f E ~~ + 
Annales de l’Institut Henri Poincare - Physique theorique
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3 . 3. THEOREM. - i ) n ~ +’) = fc + 
ii) ~~ dl n ~ +’) = Jc.

3 . 4. REMARK . From ii) it follows in particular that the algebra 
has a faithful, translationally covariant Hilbert space representation.

Proof of 3.3. 2014 ~) In view of lemma 3 . 2 it suffices to show that the linear
span of n n ~+’ is dense in ~~1 n To prove this we
use theorem 3.1. Let ~p E ~ and define

The 03C8n is totally symmetric, translationally invariant, and belongs
to J(Rd(n-1) as a function of the difference variables xi - x1. If
T E n and N  oo, we define a functional T’ E n ~’~dl by

This functional obviously satisfies the condition of theorem 3.1 and
thus belongs to the linear span ~+’. But T can be approxi-
mated weakly by such functionals if we take N ~ oo and ~p = 1 on an
increasingly large portion of f~d.

ii) Suppose Z~), i. e. T(/* @[) = 0 for all

By theorem 4 . 5 in [2] ] we have to show that
T(/*(x)/)=0 for all Obviously Yo=0. Moreover,
if T E ~~1 n ~ +’ and h E ~, we may consider the functionals

The functional Sh is in n and is moreover conditionally posi-
tive. By theorem 2.2 it is a linear combination of functionals in

n ~ +’. Hence Sh(f* (8) f ) = 0, and since &#x3E; 0,
and a t-~ (8) fa) is continuous, we conclude that Th( f * @ /) = 0.
Since this holds for all h we have finally T(/* (8) /) = 0 and thus Ye 

4. INTEGRATING OVER THE LORENTZ GROUP

This section consists of a few technical lemmas concerning integration
. over the proper, orthochronous Lorentz group L+ = SO(1, d - 1). It will
be convenient to parametrize the Lorentz transformations by writing
Vol. 45, n° 2-1986.
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them as products of boosts and rotations. Let &#x3E; U

and p° &#x3E; 0. We define the boost operators Ap as follows :

For 
we put

and 0 the other matrix elements zero. More generally, I with pI
of the form as above and R E SO(d -  0  0  o   , ’ , ’
We then have ~ App i = p i with p i = i 0), and 0 moreover

Note also that

(p°, - p), and

Every Lorentz transformation A can be written uniquely as

with a rotation R and a boost Ap. For each m &#x3E; 0 the corresponding

vector p E Hm + := { ~! = &#x3E; 0} is also uniquely determined

by A. 
-

The (left- and right-) invariant Haar measure on S0(l, ~ - 1) can 
in

this parametrization be written

where d R is the (normalized) Haar measure on SO(d - 1) and dp is the

Lebesgue measure on (~d. The factor m-~d-2~ is so chosen that dA is inde-

pendent of m.
The eigenvalues of Ap are p ~ 1 and + ! 7? 

where m p :_ ( p . p) 1 ~2. We thus have

where p ~ is the Euclidean norm of p. Also, since the smallest eigenvalue is

we have for all q E ~

If q E V + and m p = mq = m, it is easy to see that

(Either use the fact that ApAq = RAqAp with a rotation R, or use for-

Annales de l’Institut Henri Poincare - Physique theorique
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mula (4.1) noting that |Apq|2 = 2((Apq)0)2 - mq2).) Hence, for such q
we have also

If e &#x3E; , we denote VE T - p.p ~ E‘, p" &#x3E; 0}.

4.1. LEMMA. Let h be a C~-function on satisfying

i ) supp h c { (q 1, ... , qn) I q 1 E VE + } for some E &#x3E; 0 ,

ii) sup 1(1 + (I ..., qn) I  o0

~11,...,9n

for all N and all multiindices a E 
is a continuous seminorm on /7", then

with f(q1, ... , qn):= f (nq 1, ... , nq") are also continuous seminorms ofi n’

Proof. 2014 We consider the first integral; the second one is treated similarly.
Since ~ . ~ I is a continuous seminorm we have for some M and all N,

using ii )

where Pa is a polynomial in the matrix elements of A and the integration
ranges over q 1 eV,’B q2, ... , qn E (~d because of i ). We now use the for-
mula (4. 2) for the Haar measure with m = mql = ml. Since we have

for all Land M a continuous seminorm ~.~L,M such that

The degree of the polynomial Pa is ~ M, and because of (4.3) we have
thus to show that the following integral is finite for sufficiently large N
andL:

Vol. 45, n° 2-1986.



130 J. YNGVASON

By (4. 5) we have

and by (4.4)

Hence

The integrals over p and q2, ... , qn thus converge for sufficiently large L,
and o by choosing § N large we make ~ the integral over q 1 convergent also.

4 . 2. LEMMA. Let f E f/n and j suppoose h is as in lemma , ~.7. The , inte-
grals

and

exist if q 1 E V +. Moreover, [/n and ’ hf E [/n and 1 there is a ’ sequence ~
set.s K,. c L~, such that

in the topology of J, with fv := fAdA, hv := hAdA.
JK~ JKv

Proof. 2014 The convergence of the integrals follows immediately from
the preceding lemma. If K c L-~ is compact, one has

Furthermore, for any continuous seminorm ~.~ on fAdA

and ~(K hAdA/ / ~ are uniformly bounded in K by lemma 4.1. Since Jn
is a Montel space, there is a sequence of compact sets Kv c L , exhausting
LJ such that ~ resp. ~~/converge in ~. Since these sequences converge

Annales de l’Institut Henri Poincaré - Physique théorique
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pointwise to h f resp. hf, these functions are the limits of hfv resp. h,, f in
the topology of ~n.

4.3. LEMMA. Let ~ &#x3E; 0. There exist Coo functions h on such that

i ) supp h c V + f,/2 ,

ii) h(Rp)=h(p) for all RESO(d), and for ~, &#x3E;_ 1 and PEVf,+’
iii) sup|1(1 + (I q|/mq))ND03B1h(q) I  00 for all a and N .

Take h1 ~J(R) with &#x3E; 0 for all t and normalize it, so that

If X is a C~-function on R such that 
= 1 for m ~ ~, x(m) = 0 for m ~ E/2,

we define

The properties i )-iy are immediately verified.

4.4. LEMMA. - If gn, n = 1, 2, ... are rapidly decreasing $ continuous

function on [1, oo [, and B &#x3E; 0, there exists a , satisfying the condi-
tions o.f lel11111a 4 . 3, snch that , for and , all multiindices 03B1’

Proof. The construction is very similar to that in the appendix of [7 ].
First one argues as in [7] that it is sufficient to consider a single, positive
function g instead of the whole sequence { g~}. Next we define a function f
rm f1 f hv _ _

where u = (u°, - u), H1 + - ~ p ~ mp = 1, p° &#x3E; 0}. The function f is

also continuous and strongly decreasing, for t = S-~  ! : 

so either u° or v° is larger than (~/2)’~. It is convenient to replace f by
a monotonus function : ..... _

and the function h is defined by regularizing and cutting M :

Vol. 45, n° 2-1986.



132 J. YNGVASON

with y(s) = exp ( - (1 + ,S2)1/2), x a C~-function with x(m) = 0 E/2,
x(m) = const. = k e. One immediately verifies that h has properties

~ of lemma 4 . 3 if the normalization k is suitably chosen. Note also that

with

and

with Ca  oo, because  y(s) for all n, and all derivatives of 
are uniformly bounded on V~. Without restriction we may assume e  1.
Because of property ii) we have

By (4 .1 ), (4 . 4), (4 . 5) and (4 . 6) we have

so the integral (4.8) is

Now we consider the derivatives. Using (4.3) we have

with a Polynomial P03B11,03B12 of degree N = 03B11| I + 0(2 !. We split the integral
into two parts. In the first part we integrate over u0 ~
mpmq. This part can be estimated by

In the second part we integrate over u° &#x3E; Since h(u) is for
a monotonously decreasing function of u° (denoted again by h),

this part is estimated by
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Because h is rapidly decreasing and because of (4. 3) and (4. 4), the integral
can here be estimated by

The next step is to show

We use again monotionicity of h:

2, the integral is bounded_betow by a constant &#x3E; 0, so (4 . 9)
holds for such p, q. On the other hand, q) is a strictly positive func-
tion of for mp, mq &#x3E; E, so the estimate (4 . 9) holds also for

 2.
In summary, we have shown that

and

with a polynomial P~. Using this, one shows by induction over the degree
of the differential operator in the same way as in the appendix in [7] that

with another Polynomial P~. Finally, if g is rapidly decreasing, so 11/2.
Replacing g by | g 11/2 in (4.10) we obtain

as desired.

5. SPECTRUM CONDITION AND POINCARE GROUP

The spectrum ideal corresponding to a closed set S c [Rd with Oe S, is the
set of all such that Jo=0 and if ... |pn~S
for k = 1, ...,~, ~ ~ 1.

According to [1] ] there is an abundance of states on f/ that annihilate
and are invariant under the translation group. We now consider Lorentz
invariant sets S and want to obtain similar results with the Poincare group
replacing the translation group.

Vol. 45, n° 2-1986.



134 J. YNGVASON

The method used here requires that S is an additive subset of f~d and
that S is contained in the light cone V ; S is then either in V + or V - and
we may choose V + by convention. For some results we shall also require S
to have a lower mass gap. We note first some simple consequences of
these restrictions on S :

5 .1. PROPOSITION. - If S is additive, then Ls satis. fies condition (A)
of theorem (2. 2) i.e. implies 

Proof. - Suppose and We want to show that

for any partition of { 1, ...,~} into (ordered) subsets Ij _ ~ i~,1, ..., }.
For any v = 1, ... , n we can write

and by additivity of the spectrum we have that

Using lemma (a), p. 417 in [7] ] and the hypothesis and 
we conclude that (5.1) holds, so 

5.2. PROPOSITION. - If S is Lorentz invariant and additive, then j~s
contains no right ideal except {0 }.
Proof The essential property of S which follows from the hypotheses

is that for any p E f~d there is a p’ E S such that p + p’ E S. We want to show
that for every f ~ 0, there is such that f (8) g~s. The elements
of J~s have all vanishing zero component, so we may assume that fo = 0.
Suppose that fn ( p 1, ... , pn) ~ 0 for some n ~ 1 and some p1, ..., pn ~ Rd.
Choose p’i E S such that pi + p’i E S for i = 1, ... , n, and pick a gn E Jn
such that ... , p’ 1 ) ~ 0, and hence -

From the additivity of the spectrum we have pk + ... + p’1 E S, and also
pk + ... + pn + p’n + ... + p’ 1 E S for k = 1, ... , n. Hence f Q 2s
lf g :- (0, ... , 0, 0, ...).

- -

In the following we denote the proper, orthochronous Lorentz group
by ~+ . Space- and time inversion can be included in an obvious way, and
all results of this section hold also for the full Poincare group P replacing P
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5 . 3. PROPOSITION. - Let S be Lorentz-invariant and , 

for some , ~ &#x3E; 0.
T hen 

__________

and ’ + + iff the ’ conditions

hold whenever /?i 1 + ... + pn = 0, Pv + ... + Pn E S for v = 2, ... , n,
and ’ at least one ’ 0.

Proof Since . contains the translation group we have

by prop. 2 . 6 iii ) in [1 ]. Every f ~ Ls + K P satisfies a), and since the

functionals 5(~i) ... and ~( p 1 - Ap1) ... belong to

KP~+ if p 1 + ... = 0, pv + ... + pn ~ S, (not all pv = 0),
it is also clear that b) and c) hold for all f E Ls + Kp.
We now want to show that every f with a)-c) lies in Ls + + 

It is convenient to introduce the coordinates qv = pn+ 1-,, + ... 
v = 1, ... , n, and write fn = f as a function of the qv. By means of a C~-func-
tion X with x(m) = S for for m ~ ~/2, we split f into terms :
/=/(0)+...+./(n) with ~o)(0~2~..~n)=0, supp ~)n(Sx...xS)={0}
and supp n (S x ... x S) c {?i=0, qv~V+ } for v = 2, ... , n. Then

. by prop. 2.1 in [1 ], and because /(0, ...,0)=0. For
v = 2, ... , n we write

where h is a function with properties as in lemma 4.3. Since

and

the first term belongs to Finally, if T E we have

where the bar denotes integration over L + . Hence E and the proof
is complete.
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5.4. THEOREM. 2014 Suppose S is Lorentz-invariant, additive, and
S c: {0}uV~ for some s&#x3E; 0.

T hen

5 . 5. REMARK. 2014 Since J~y-. = 1 with S, = {0} u it follows

that ii) and iii) hold also for S = VB
The proof of 5.4 is similar to that of theorem 3.3. It makes use of a

partial characterization of the linear span of ~S1 n .~’~ + 1 n ~~.
The functionals i n t h i s space must in any case satisfy an est i mate

with a &#x26;2-invariant Hilbert-seminorm ~.~ vanishing on In the case
of the translation group, such a condition is also sufficient to characterize
the linear span of the invariant states. It is not known whether this is true
for the Poincare group. Instead we shall have to make use of a somewhat
elaborate sufficient condition which means essentially that in addition
to (5 . 2), the matrix elements T( f (8) decrease rapidly in A for all _f, g
with fo = go = 0. 

- 
- -

We shall use the following notation [7]: If pl, 
V + ,u = n, and f E Sv, g E SII’ we write

5.6. PROPOSITION. - Suppose S is Lorentz invariant, additive,
S c ~ 0 ~ ~ VE + for some E &#x3E; 0, and S contains at most a finite numer of
isolated mass shells.
The following condition is sufficient for a functional T E ~’ to belong

to the linear span of 2s1- n ~~ + 
1 n ~ +’ : 

-

T" has support in { - p1 ~ VE +, p" E VE + } for all n and there are constants k"
Annales de l’Institut Henri Poincare - Physique theorique



137INVARIANT STATES ON BORCHERS’ TENSOR ALGEBRA

and rapidly decreasing continuous functions ~pn on !R+ such that the following
holds for all f E g E ~, v + Jl = n:

Proof. 2014 By lemma 4.4, the condition implies that there is a function I~,

such that the functional T’. defined by

satisfies the criterium of theorem 5 .1 in [1]. (The finite number of isolated
mass shells together with L ± invariance guarantees that S is regular in
the sense of [1 ]). T’ can thus be decomposed into Rd-invariant, positive
functionals in If R is such a functional, it follows from lemma 4. 2 that

is well defined, conditionally positive and P-invariant. Since T is

riant, it follows in the same way as in the proof of thm. 3 .1 that T is a linear
combination of conditionally positive functionals in ~Sl n ~~ + . The
assertion thus follows from theorem 2.2.

Proportion 5.6 is not quite sufficient for proving theorem 5.4 because
of the requirement that supp Tn should be contained in { 

The next proposition takes care of this.

5.7. PROPOSITION. - Suppose T belongs to the linear span of

Then this is also true for the functional T’ with

for any choice u {0}, ~ + j" _ n.

Proof. 2014 since T can be decomposed into functionals in ~ 1 n ~~+1 n ~+ ~
we h ave .~.~.- ..~ ~.~~ ,., r , ,~ ~. ,

for some R E LS n KP ~ J+’.
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Consider now for fixed n the case in = 1, jn = 0. If E E 

v = n, V ~ 1, we have

It follows by prop. 2.6 that the hermitean functionals

and

are dominated by the positive functional

for some sequences {03B1n} and {03B2n} of positive type, so these functionals
are decomposable. The same argument holds for in = 0, j" = 1. By induc-
tion over in andjn we conclude, using propositions 2. 4 ii) and 2. 6 repeatedly,
that the functional T(n&#x3E;’ = (0, ... , 0, 0, ... ) is decomposable for each n.
Moreover, since the m-point functions occurring in these decompositions .

are constructed from 5 and Rk with k ~ m, it is clear that these func-
tionals are all continuous w. r. t. an n-independent seminorm on ~. By
prop. 2.5 it follows that T’ is decomposable.

Proof of theorem J. 4. 2014 f) Suppose /~ J~s + + ~L + . By prop. 5 . 3
there are three possibilities :

a) , which case ... ) E ~S1 n ~~ + 1 n ~ +’ ;
b) ~(0, ...,0) ~ OwithT=(0, ....O~~O...).

This T belongs to lin. span ~~ + 1 n ~ +’ by prop. 5 . 7;

for some n and p1,...., pn ~ Rd, p1 + ... + pn = 0,
not all ~ = O. Then T([) 5~ 0 for T = (0, ..., 0, Tn’ 0, ...) with

and pn _ ~ ~ 0 for some j. This functional is in the linear span of

by prop. 5.6 and o prop. 5. 7. (The condition of prop. 5.6 that S has only
a finite number of isolated mass shells is insignificant here : We can consi-
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der instead of S the smallest, L~-invariant and additive subset of S containing
all the Altogether we thus have

so

The other inclusion is trivial.

ii) Consider the functionals

with either

or

~ 0.
These functionals belong to the linear span of ~S1 n ~’~ + 1 n ~ +’

by prop. 5 . 7. Hence T~2n~( f * Q ~’) = 0 for all n~~~).
This implies that the highest component fn of f belongs to 2s. Now prop. 2 . 5
implies that ~~ + 1 n ~ +’) is graded, so we can repeat the argu-
ment and finally obtain f E 2s.

iii) Is an immediate consequence of ii) and prop. 5.2.
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APPENDIX

In this appendix we discuss some examples and counterexamples, that illustrate the
preceding results in a more general setting.
We use the notation explained in the introduction and consider first the case that j~

is a C*-algebra. Here a strong version of (1.1) is valid:

A . 1. PROPOSITION. - Let j2/ be a C* -algebra, G a group acting an j~ by automorphisms
a left ideal in j~. T hen

and hence (by duality)

Proof - If T is G-invariant and annihilates J~ and the same holds for its hermitian
and antihermitian part. We may thus suppose that T is hermitian. The Jordan decomposition

is uniquely determined by the conditions

cf. e. g. [7~], p. 120 and 140. Since automorphisms preserve norms, the functionals Tt are
therefore G-invariant. To show that Ti E we pass to the universal enveloping W*-
algebra A". The weak closure of L in A" is generated by a hermitian projector e.
T has a natural extension to ~" by continuity, and since T annihilates J~f we have

for all a ~ A. Considering

we have Ti E ~+’, [( II T,!!, and by (*) and (**)

so 1/ T 1/ = 1/ ’Î1 1/ + 1/ T2 BY uniqueness of the Jordan decomposition we thus have
E 

As next we consider left kernels. If G is a group of automorphisms, we denote by 
the largest left ideal contained in ~G.

A . 2. PROPOSITION. - Let A be a C*-algebra and L a closed left ideal in A. Then
n A+’) = L. If A is a W*-algebra, G a group of automorphisms of A and L is G-inva-

riant, then

Proof. - The first part is standard : Let e be the projector in ~" generating the weak
closure, Then T’(a) := T((1 - e).a.(1 - e)) belongs
and

For the second part one notes that the generating projector e for J~ is G-invariant, if J~
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is G-invariant. Hence T’ is G-invariant, if T is. If a E n ~+’~ we thus have,
using prop. A.1,

A . 3. REMARKS. - If d is a C*-algebra, but not necessarily a W*-algebra, the same
argument as in the proof above shows that

where is the intersection of the left kernels in ~" of G-invariant functionals T E j~~~.

If it follows from this that

It is, however, not clear if this holds in general for a C*-algebra (except if J~f = { 0 },
when it follows by A. 1 and the definition of 

ii) If ~ is the C*-algebra of all bounded, continuous functions on G, and IX is the natural
action of G on j~, then {0 iff G is an amenable group. If this is not the case, one
has therefore

iii) Another example with L G ~ {0 }. but G amenable, is the following : A is the C*-
algebra of bounded, continuous functions f on tR, such that lim f(x) exists. (G, IX) is the

natural action of IR on A. Here is one-dimensional and spanned by the functional
.f’ H lim f(-v). In this example

For compact groups G, but arbitrary j~ one has

A . 4. PROPOSITION. - Let A be a locally convex, topological *-algebra, and suppose
the states on A separate points. Let G be a compact group of automorphisms of A. T hen

a?M

ii) a G-invariant left ideal, and d is complete, ’ then

and

Proof. - Since i ) follows from ii) with f£ = { 0 }, we consider the latter statement. Sup-
pose a E n A+’) and write

where d’t denotes the normalized Haar measure on G. Since is complete, h E .~/. Moreover,
if T E f//1- n ~/~’. then the functional

and thus

But
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so

Furthermore, by G-invariance of we have

Hence, if d E n n .c/") then

Since 1; ~ T((x~)*((x~)) ~ 0 is continuous, it follows that = 0, and thus

We have now given an account of the « good cases » (~/ = C*-algebra, and/or G compact),
where some variant of (1.1) and (1. 2) holds quite generally. In the remainder of the appen-
dix we collect examples, which demonstrate some of the « bad cases » that may occur
in Borchers’s algebra ~.

In the first example, we show that may be zero, even for a single automorphism
(i. e. for the amenable group G ~ Z).

A. 5. EXAMPLE. - Let h be a hermitian functional in ~/, ~ 7~ 0. Define an automor-
phism x:~ ~ ~ by

and canonical extension to the tensor algebra ~. Suppose T(-To, T1, ... ) E y is invariant
under 0153. Then Ti( f ) = Tl( f ) + To for all f and thus To = 0. In the same way
T2(fl 0/2)= T2(/i (x) f2) + so T1 = 0, and by induction we
get T" = 0 for all n.

If a is a graded automorphism, i. e. for all n, then at least the trivial functio-
nals (To, 0, 0, ... ) are invariant. The next two examples show : 1. that there may be no others,
and 2. that K(Jfc~~~~) 7~ ~G is possible, even for graded automorphisms.

A . 6. EXAMPLE. - Define (c~),, = with ~, E IR, ~, ~ 0 or 1. Then T" = 0 if ~ 1,
for any invariant T E ~. 

-

A . 7. EXAMPLE. - Let { ei }t=i,2,... be a Schauder basis for f/1 (e. g. the Hermite func-
tions). Suppose 03BB ~ 0 or 1 and define a graded automorphism oc on J by

Clearly, there are no invariant, continuous seminorms on yB except 0. Hence there
are no nontrivial, invariant states T on ~, for otherwise f H Q would be
such a seminorm. On the other hand, there are many invariant functionals in ~’. In fact,
T is invariant iff 0 ... 0 ein) = 0 for all (il, ..., f,,) such that the number of odd
indices is not the same as the number of even indices. This example shows also that the
topology defined by invariant Hilbert seminorms on y need not be the same as the topo-
logy defined by invariant states, in contrast to the case of the translation group (cf. [1 ]).

In examples A. 5-A. 7 it is the group action on y that does not merge with positivity.
As next we consider examples of « bad » ideals in ~.

It is clear that the condition n ~+’) _ ~ does not hold for all two sided, *-inva-
riant ideals in ~. -
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Counterexamples are e. g. the ideals

with N &#x3E; 2. We now give an example of a left ideal L such that

but

A . 8. EXAMPLE. - Let "j/ c !/1 be a subspace, such that ~1, but iT + iT* = ~1.
For example, one might take

where  denotes the Fourier transform of f. Define

Then ;£ ’ + L* = ~ Jn, so L n ’ , 0, ... )|T0 ~ 0} and o

It is not known if there exist left ideals 2 in ~ with L(~1 n ~ +’) = 2 but
K(J~ n ~~’) ~ ~ + J~f*.
The next remark about ideals is that the sum of two well-behaved ideals need not be well-

behaved. The following example is based on the fact that the energy momentum spectrum
cannot be arbitrary in a local quantum field theory (a related example is due to Borchers [9 ]).

A . 9. EXAMPLE. - Let F be the locality ideal and L = 2s a spectrum ideal (cf. [1]) with

S = {0}u{ 
Both F and L are well-behaved w. r. t. positivity in the sense that (1.1) and (1. 2) hold [1] ] [2 ].
Also, ~1 n 2s1. contains at least the functionals (To, Tl, ... ) with Ti = const.
and T2 proportional to the two-point function of the free field of mass m. Hence

and also

On the other hand, ~ n !£.L n ~~’ consists only of the trivial functionals (To, 0, 0, ... ).
The proof of this is a slight modification of the usual argument for the additivity of the
spectrum (2) [14 ]. By prop. 2 . 6 iii) in [7] every is translationally
invariant. Denote by D(/) the corresponding field operators, U(a) the representation of
the translation group, Q the invariant, cyclic vector and Eo the projector on the space
of all invariant vectors. If f E ~ we have by locality

with Eo’ = projector on the invariant vectors orthogonal to Q. From this we conclude,

(2) The modification is necessary, because one cannot in general appeal to the cluster
property [15].
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that if p belongs to the spectrum ofD, then so does 2p. Since S does not meet this requirement,
except if p = 0, we conclude that

Hence

and

The final examples concern the combination of invariance under automorphism groups
and annihilation of ideals. We shall need the following lemma.

A 10. LEMMA. - Let f be the two-sided ideal generated by all anticommutators
f + g (8) f with f, g E [/1 having space-like separated supports. If n 

invariant under then the n-point distributions T" vanish for n odd.

Proof - Let D(/) denote the GNS-representation defined by T and let Eo be the pro-
jector on the translationally invariant vectors in the GNS Hilbert-space. The operators

are well defined and can be multiplied freely, because Rd is an amenable group
(cf. [16 ]). Moreover, anticommutes with if and

both n and m are odd. It follows that = 0 for n odd, so Tn = 0 for n odd.

A 11. EXAMPLE. - Let  be the ideal generated by anticommutators as in lemma A 10
and G = We claim that

but

In fact, the last statement follows from lemma A. 10, because the functional

belongs to J n ~G1, and cannot be approximated by functionals with vanishing 1-com-
ponent. The first equality can be proven in a similar way as the corresponding statement
for the locality ideal [2 ], thm. 5 . 5. The only change from the proof in [2] is the occurrence
of minus signs in formula 3.10 in [2], but with this modification the proof remains valid.
(Note that ~ is not generated by all anticommutators; in particular f 2 ~ ~ unless f = 0.)
Finally the equation K(.3L~’~dl r~ ~+’) _ was proven in [1 ], thm. 5 . 3.

A .12. EXAMPLE. - We give an example of a group G and a G-invariant left ideal J~f,
such that

but

This example is based on the spin-statistics theorem. We take for G the orthochronous,
proper Lorentz group L + with its natural action on ~. The left ideal J~ is defined as follows :
Let be a massive, free spinor field, and define a hermitian field ~ by .
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Put ~~(x) _ for A E L!., and let TA be the corresponding positive functional on ~.
Then we define

I£ is G-invariant and satisfies, by definition, the condition I£ = ~+’). Moreover,
I£ contains both the spectrum ideal with S = spectrum for a massive, free field, and
the two-sided ideal generated by anticommutators as in lemma A. 10. Since Sn-S={0},
every hermitian functional annihilating J~f is translationally invariant. A positive func-
tional in n thus corresponds to a Poincare covariant scalar field with the wrong
commutation relations at space-like distances. Hence, by the spin-statistics theorem,

To show that J’+’) _ { 0 }, we use the results of section 2. Repeated use of
prop. 2.4 with

shows that there is a Lorentz-invariant, positive functional T such that
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