Asymptotic observables and Coulomb scattering for the Dirac equation
Annales de l'I.H.P. Physique théorique, Volume 45 (1986) no. 2, p. 147-171
@article{AIHPA_1986__45_2_147_0,
     author = {Thaller, Bernd and Enss, Volker},
     title = {Asymptotic observables and Coulomb scattering for the Dirac equation},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {45},
     number = {2},
     year = {1986},
     pages = {147-171},
     zbl = {0615.47008},
     mrnumber = {866913},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1986__45_2_147_0}
}
Thaller, Bernd; Enss, Volker. Asymptotic observables and Coulomb scattering for the Dirac equation. Annales de l'I.H.P. Physique théorique, Volume 45 (1986) no. 2, pp. 147-171. http://www.numdam.org/item/AIHPA_1986__45_2_147_0/

[1] P.R. Chernoff, Essential self-adjointness of powers of generators of hyperbolic equations. J. Func. Anal., t. 12, 1973, p. 401-414. | MR 369890 | Zbl 0263.35066

[2] J. Dollard and G. Velo, Asymptotic behaviour of a Dirac particle in a Coulomb field. Il Nuovo Cimento, t. 45, 1966, p. 801-812.

[3] V. Enss, Geometric methods in spectral and scattering theory of Schrödinger operators. In: Rigorous Atomic and Molecular Physics, G. Velo, A. S. Wightman (eds). New York, Plenum, 1981.

[4] V. Enss, Asymptotic observables on scattering states. Commun. Math. Phys., t. 89, 1983, p. 245-268. | MR 709466 | Zbl 0543.47008

[5] V. Enss, Propagation properties of quantum scattering states. J. Func. Anal., t. 52, 1983, p. 219-251. | MR 707205 | Zbl 0543.47009

[6] V. Enss, Quantum scattering theory for two and three-body systems with potentials of short and long range. In: Schrödinger Operators, S. Graffi (ed.), Lecture Notes in Mathem., 1159, Springer, Berlin, 1985, p. 39-176. | MR 824987 | Zbl 0585.35023

[7] W. Hunziker, On the space-time behaviour of Schrödinger wavefunctions. J. Math. Phys., t. 7, 1966, p. 300-304. | MR 193939 | Zbl 0151.43801

[8] A.J. Kalnay, The localization problem. In: Problems in the Foundations of Physics, t. 4, M. Bunge (ed.). Berlin, Springer, 1971.

[9] M. Klaus and R. Wüst, Characterization and uniqueness of distinguished self-adjoint extensions of Dirac-operators. Commun. Math. Phys., t. 64, 1979, p. 171-176. | MR 519923 | Zbl 0408.47022

[10] Pl. Muthuramalingam, Scattering theory by Enss' method for operator valued matrices: Dirac operator in an electric field, J. Math. Soc. Japan, t. 37, 1985, p. 415-432. | MR 792984 | Zbl 0581.47006

[11] Pl Muthuramalingam and K.B. Sinha, Asymptotic completeness in long-range scattering II. Ann. scient. Ec. Norm. Sup., t. 18, 1985, p. 57-87. | Numdam | MR 803195 | Zbl 0584.47009

[12] G. Nenciu, Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms. Commun. Math. Phys., t. 48, 1976, p. 235-247. | MR 421456 | Zbl 0349.47014

[13] P.A. Perry, Scattering theory by the Enss Method. Mathematical Reports, t. 1, Harwood, Chur., 1983. | MR 752694 | Zbl 0875.47001

[14] C. Radin and B. Simon, Invariant domains for the time-dependent Schrödinger equation. J. Diff. Equ., t. 29, 1978, p. 289-296. | MR 502354 | Zbl 0351.34004

[15] M. Reed and B. Simon, Methods of Modern Mathematical Physics I, Functional Analysis. New York, Academic Press, 1972. | MR 493419 | Zbl 0242.46001

[16] M. Reed and B. Simon, Methods of Modern Mathematical Physics II, Fourier Analysis, Self-Adjointness. New York, Academic Press, 1975. | MR 493420 | Zbl 0308.47002

[17] M. Reed and B. Simon, Methods of Modern Mathematical Physics III, Scattering Theory. New York, Academic Press, 1979. | MR 529429 | Zbl 0405.47007

[18] E. Schrödinger, Sitzungsb. Preuss. Akad. Wiss., Phys.-Math. Kl., t. 24, 1930, p. 418. | JFM 56.0754.06

[19] K.B. Sinha and Pl. Muthuramalingam, Asymptotic evolution of certain observables and completeness in Coulomb scattering I. J. Func. Anal., t. 55, 1984, p. 323- 343. | MR 734802 | Zbl 0531.47008

[20] R. Wüst, Distinguished self-adjoint extension of Dirac operators constructed by means of cut-off potentials. Math. Z., t. 141, 1975, p. 93-98. | MR 365233 | Zbl 0311.47020

[21] B. Thaller, Relativistic scattering theory for long-range potentials of non-electrostatic type. Lett. Math. Phys., to appear 1986. | MR 849249 | Zbl 0643.35078

[22] Pl Muthumaralingam and K.B. Sinha, Existence and completeness of wave operators for the Dirac operator in an electro-magnetic field with long-range potentials. Preprint, New Delhi, 1986. | MR 989018