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Feynman diagrams and large order estimates
for the exponential anharmonic oscillator

Stephen BREEN
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ABSTRACT. - Upper and lower bounds are derived which prove the
~ conjectured divergence rates for the perturbation coefficients of the lowest

eigenvalue (ground state energy) and of the trace of the semigroup for the
exponential anharmonic oscillator. Our methods involve Feynman dia-
gram representations for the exponential interaction and path integral
estimates. We also prove a bracketing inequality for the ground state energy
perturbation coefficients which has appeared in several other examples.

RESUME. - Nous demontrons des bornes superieures et inferieures qui
prouvent les vitesses de divergence attendues pour les coefficients de per-
turbation de l’énergie la plus basse et de la trace du semi-groupe, pour
l’oscillateur anharmonique exponentiel. Nos methodes utilisent des repre-
sentations en diagrammes de Feynman pour 1’interaction exponentielle
et des estimations d’integrales de chemins. Nous prouvons aussi une

inegalite encadrant les coefficients de perturbation de l’énergie la plus
basse, qui est apparue dans plusieurs autres exemples.

1. INTRODUCTION

In two recent articles, Grecchi and Maioli [7] ] [2] ] have introduced a
generalized Borel summation method for divergent power series whose
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156 S. BREEN

coefficients grow faster than any factorial power. Specifically, if a function

has an asymptotic power series with the coefficients ak growing
k

like (nk) ! exp (ck2) with c &#x3E; 0, then [7] ] [2] give sufficient conditions for
the series to be resummable to the function by an extension of the usual
Borel method [5] ] [6 ].
The main proposed application of this method is to the eigenvalues

of anharmonic oscillator Hamiltonians of the form

with ~ ~ 0, x ~ 0, m = 0, 1, 2, 3, ... However, there has not yet been

any proof that the eigenvalues of (1.1) even have divergent perturbation
series, or more importantly that the rate of divergence is faster than any
factorial power. In [3 ], Grecchi et al. study the m = 0 case of (1.1) and
give strong arguments, but not a rigorous proof, that all eigenvalues have
perturbation coefficients ak which grow like exp (ca2k2) for c &#x3E; 0. In this

paper, we prove that the perturbation series for the lowest eigenvalue
(ground state energy) of ( 1.1 ) with m = 0 has the conjectured divergence
rate. We also prove that a bracketing inequality for the kth perturbation
coefficient due to Spencer, which has been much used for large order
estimates [7] ] [~] ] [9] ] [10 ], holds for this case. Finally, we consider the
trace, Tr [e - TH~~~ ], for ~=0,1,2, 3, ... , and show that its perturbation
series has coefficients bk which grow like km exp !, c &#x3E; 0. The trace
was also considered in [2] as a suitable example for the new summability
method, but no proof was given that the bk had the desired divergence rate.
We will prove these results by using path integral methods and Feyn-

man graph representations for the perturbation coefficients. Section 2
contains statements of our results and some definitions. The divergence
rate for the ground state energy will be proved in section 3, along with
the bracketing inequality. Also, the Feynman graph representations for
the exponential interaction will be derived in section 3. Section 4 contains
the proof of the divergence rate for the perturbation coefficients of the
trace of the semigroup. Some comments on our results are contained in
section 5.

2. PRELIMINARIES AND STATEMENT OF RESULTS

We let E(~,) be the ground state energy of the Hamiltonian
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157FEYNMAN DIAGRAMS AND LARGE ORDER ESTIMATES

~ ~ 0, x 5~ O. In [4 ], Maioli studied H 1 (~,) and proved, among other things,
that this operator had discrete spectrum with nondegenerate eigenvalues
to each of which the Rayleigh-Schrodinger perturbation series was asymp-
totic. If

is the asymptotic perturbation series as ~, ~ 0 + for the ground state energy,
then our first result is the following.

THEOREM 2.1. - There exist positive constants inde-

pendent of k, such that for all k  1,

with C1 = exp (a2/4e), and C2 = exp (a2/4).

Remark. 2014 The numerical values for C1 and C2 are reasonably accurate.
That is, the dominant contribution to the large k asymptotics of ak is expected
to be exp (03B12k2/4) [11 ].

Path integrals will enter in the proof of Theorem 2.1 by the well-known
formula 

’ 

.

where

fT/2with V( 4» = exp and d~x(~) the mean zero Gaussian
-T/2

measure with covariance Gx(s, t) for X = p (periodic), D (Dirichlet), 0 (free).
Explicitly,

and

for s, t E [ - T/2, T/2 ]. Notice that Gx(s, t ) is the kernel of the integral
operator ( - Ax + 1)-1 in which Ax is the Laplacian obeying X = p, D, 0
boundary conditions on [ - T/2, T/2 ].
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158 S. BREEN

In proving Theorem 2.1, and in proving the bracketing inequality,
we will need the finite T quantities

The bracketing inequality is our second result.

Remark. 2014 This bracketing inequality holds in a number of other cases.
It was first proven by Spencer [7] for the ground state energy of an x2m
anharmonic oscillator. It also holds for the pressure, with ( - 1)k+ 1 changed
to ( - 1)k of a Euclidean lattice field theory in any dimension, and of
a 03C62m Euclidean continuum field theory in 2 dimensions. See [7] [8] [9] [10]
for applications to asymptotics of large order perturbation theory.
Our last result is motivated by considering

where

~ ~ 0, m =0, 1, 2, ..., and we assume a &#x3E; 0. The Feynman-Kac formula
yields

with

and so the coefficients in the asymptotic series

have the representation

We wish to find upper and lower bounds to which will prove the
desired divergence rate. However, we will consider the case of more general
boundary conditions by looking at
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159FEYNMAN DIAGRAMS AND LARGE ORDER ESTIMATES

and its asymptotic perturbation series

in which

The next theorem is our final result.

THEOREM 2. 3. - For 1 and T, there exist positive constants A,
B, C, a, b (a  b) independent of k, such that

Remarks. 2014 1. The constants may depend on T and X.

2. Theorems 2.2 and 2.3 may be combined to give a second proof of
Theorem 2.1 independent of the proof given in section 3, but with diffe-
rent values of the constants A1, A2, B1, B2, C1, C2 . We will discuss this
at the end of section 4.

3. The assumption a &#x3E; 0 seems necessary for m &#x3E; 0, since if both m

and k are odd, ( - is negative for a  0, so (2 .11) cannot be true.

3. FEYNMAN DIAGRAMS
AND THE BRACKETING INEQUALITY

Our first objective is to establish Feynman graph representations for
and ak. The proof of Theorem 2.1 will then follow by adapting

work of Simon on the quartic oscillator [12, sec. 20 ]. To begin, define

rk = {graphs |k vertices, no more than 1 line between each distinct

pair of vertices, no self loops },
rp = {graphs |k vertices, no more than 1 line between each distinct

pair of vertices, no more than 1 self loop to a vertex },
and rk, hDe are defined in the same way, but with the additional restriction
that all graphs are connected. For fixed k, we note that the number of
lines in different graphs may be different. In particular, if L is the number
of lines in a graph, than for rk, 0 ~ L =$ ~ - 1)/2, while for

rk, ~-1~L~~-1)/2. Similarly, for r~,O~L~~+l)/2, and for
~-1~L~~+1)/2. The reason for the separate definitions for

Vol. 46, n° 2-1987.



160 S. BREEN

rD, is that for X = p, 0 we will be able to factor out contributions
to the graphs from self loops.
Each line in a graph may be thought of as having a direction, with an

initial and final vertex. For the line l, we label the variable corresponding
to its initial vertex as sli and the variable corresponding to its final vertex
as slf. Our last definitions are

and

PROPOSITION 3.1. - For all k  1 and T,

and

Remarks. - 1. Recall that for Theorem 2.1, we are considering the
m = 0 case of ( 1.1 ), so the of this proposition will be

and not the m ~ 0 case of (2.10).
2. For the case X = p, we may use the periodicity and translation inva-

riance of hp(s - t ) to obtain

and
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161FEYNMAN DIAGRAMS AND LARGE ORDER ESTIMATES

3. In (3. 5), (3.6), and (3. 7) one vertex has been set equal to zero in the
integrands.

4. From the calculation (3.9), it might seem that the functions

exp (a2Gx(s, t) should appear in our Feynman graph representations
instead t). However, the use t) makes explicit the cancella-
tions between terms which appear in that diverge for large T. For
example, if X = p, then

and the bound const. shows that a2(T) has a finite limit as
T -~ oo.

Proof. Evaluating the integral in (3.8), we have

If X = p, 0, then s~) = Gx(O) and (3 . 9) becomes

Vol. 46, n° 2-1987.
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For simplicity, we will work the rest of the proof for the cases X = p, 0.
The X = D case is a trivial modification.

Next, write exp = s~) + 1 and substitute into

(3.10) to obtain

where it is understood that when l = 0 there is no sum on ..., ml

and when l = k(k - 1)/2 the empty product is 1. To obtain (3 .1) from (3 .11),
use that

where is the set of those graphs in rk with exactly l lines. It is then

easy to verify that

Indeed, the right side of (3.12) is an enumeration of all possible ways
of choosing exactly k(k 2014 1)/2 2014 ! lines from amongst the maximum k(k -1)/2
lines possible for a graph in Therefore, (3.10), (3.11), and (3.12) prove
(3 .1).
The representation (3.3) is an immediate consequence of (3.1) since it

is a well-known property of Feynman graph representations for pertur-
bation coefficients that in taking logarithmic derivatives, as in (2.6), we
pass from the sum of all graphs for to the sum of all connected graphs
for 

In order to prove (3 . 5), we first note that using (3 . 8) for it is easy
to see that

lim = right side of (3 . 5) .

l’Institut Henri Poincaré - Physique theorique
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Therefore, we must show that as T -~ oo, where we use the

definition (2 . 6) for This may be easily done by adapting Simon’s
work on the x4 anharmonic oscillator [12, p. 213-215 ]. In particular, if

L~(~i,...,~) is the kth Ursell function (connected Schwinger func-

tion) [12, p. 129 ] with respect to the measure exp ( - then

and from [72] it will suffice to show

then (3.14) will follow from Simon’s proof, since the necessary estimates,
exp 0 0,

and X 1m exp ( - Hi(0)) a bounded operator, still hold (Hi(0) is the sum
of k copies of HI (0) acting on L2(~k)). This finishes the proof of (3.5).

Proof of T heorem 2.7. 2014 Our proof is similar to Simon’s proof [72] of
upper and lower bounds for the ground state energy perturbation coeffi-
cients of the x4 anharmonic oscillator. We will obtain our upper and
lower bounds by rewriting the sum in (3.5) as

where rk,k -1 + ~ is the set of all graphs in n with exactly k - 1 + l lines.
The lower bound in (2.1) will be obtained by restricting each integration
in (3 .15) to the interval [0,1 ]. This will give us

in which # (rk,x -1 + y is the number of graphs in A graph in
rk,x - ~ + ~ can be constructed by first choosing k - 1 lines which connect

Vol. 46, n° 2-1987. 6
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the graph. Next pick only l lines from the remaining (k -1)(k - 2)/2 pos-
sible choices for lines. Therefore,

and so

This gives us the lower bound of (2.1). The upper bound will follow by
picking, for each lines which connect y. If these
lines are labeled l = 1, ... , k - 1, then the change of variables xl = 
will have Jacobian equal to 1, as in [12, p. 221 ]. We obtain an upper esti-
mate of

since t ) ~ exp (a2/2) - 1. Also

so combining with (3. 15) yields

This finishes the proof of the upper bound o for Theorem 2.1.

Annales de l’Institut Henri Poincare - Physique theorique
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Proof of Theorem 2. 2. 2014 The proof follows Spencer’s argument for the x4
case [7 ]. We will first do the lower bound in (2 . 7). For purpose of comparison
with aD(T), we write ak as

where V = MT for fixed T, M -+ oo through positive integers, and we
are indexing the integration variables by the vertices instead of the lines.
By using we have absorbed the factor of (3 . 5) into the integrand
in (3 .17). We can rewrite the integral in (3 .17) as

and this shows that ( - 1 ak &#x3E; ( - In the third line of (3.18),
we have dropped those terms for which ni ~ nj, and in the last line we use

S~) ~ s~).
For the upper bound of (2 . 7), we need only compare the integrals in (3 . 5)

and (3 . 7) since Expanding the exponentials in the integrand
of (3 . 7) gives us

in which ! n ~ = Enl. The method of images formula

Vol. 46, n° 2-1987.
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then yields

and so

Similarly,

where we are again indexing the integration variables by the vertices.

Splitting up the integration and then translating yields

The right side of (3.19) contains all terms of the right side of (3.20) plus
additional positive terms, and so ( - 1)~~(T) ~ ( - 

4.. PARTITION FUNCTION PERTURBATION COEFFICIENTS

Our objective in this section is to prove upper and lower bounds on
the perturbation coefficients b(T) which are defined, respectively,
in (2.10) and (2.9).

Proof of Theorem 2.3. - The theorem requires upper and lower bounds
on the non-negative integral

Annales de Henri Physique - theorique -
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We will do the upper bound first. Applying Schwartz inequality in the s
integral and then in the 03C6 integral gives us

rT/2
If we let V,(~) = then

J-T/2

in which II is the norm and we have used hypercontracti-
vity [13, Th. 1.22] in the last inequality. For the second integral in (4.1),

0, then max Gx(5, ~) = Gx(0). Combining (4.2) and (4.3) gives us

and this finishes the proof of the upper bound.
In doing the lower bound, we first consider the case of m even, m = 2p.

The lower bound follows, as in [8 ], by translating ~ --+ ~ + and then
using Jensen’s inequality. The function ~o will be given later, and depends
on the boundary conditions. We obtain

Vol. 46, n° 2-1987.
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where Ax = - Ax + 1. The integral in the last inequality of (4 . 4) is explicitly

For the cases X = p, 0, we choose = a/T, and our lower bound becomes

and we are done. For X = D, let = where is a smooth,

non-negative function obeying Dirichlet boundary conditions, and a similar

analysis yields the required lower bound.
If m is odd, m = 2p + 1, but k is even, k = 2j, then we translate, as in (4 . 4)

to get

Annales de l’Institut Henri Poincare - Physique ’ theorique ’
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The integral in (4.6) is

again by Jensen’s inequality. The argument leading up to (4.5) may now
be repeated on the last integral of (4. 7) to obtain the lower bound of (2.11).

Finally, if m and k are both odd, m = 2p + 1, k = 2j + 1, then

where we have used the second GKS inequality [7.?, p. 274 ; 12, p. 120] in
the third line of (7.8). Using GKS requires expanding the exponentials
in (4.8) and also noting that the lattice approximation to is ferro-
magnetic for X = p, D, 0 (see [14, sec. IX .1 ]. The integral

may now be treated as in (4. 7) and this finishes the proof of the theorem.
Theorems 2 . 3 and 2 . 2 may be combined to yield a second proof of Theo-

rem 2.1. First, comparison of (3.6) and (3.7) shows that

since the sum over 03B3 ~ 0393k contains the sum over yen. Combining (4. 9)
with the m = 0 upper bound of (2.11) and the bracketing inequality (2. 7)
yields

Vol. 46, n° 2-1987.
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For the lower bound, it follows from the definition (2.6) that

where

and recall that

Using (4.10) and the lower bound of Theorem 2.3 it is easy to see that

for /c large (see for ex., [9, Lemma 2.2 D. Briefly, this follows by using

to prove inductively that

Eq. (4.11) follows from (4.10) and (4.13) since

The second line above uses that V( ~) &#x3E; 0, so that

while the last lines uses the m = 0 lower bound of (2.11). To prove (4.13),
assume it is true for n - 1, k &#x3E; 2, and use (4.12) to find

Annales de l’Institut Henri Poincaré - Physique theorique
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which proves the induction step. The argument used in (4.14) can then be
adapted to prove (4.13) when n = 2. For example, if ko is fixed but large, then

where the first line uses the log convexity in k of This com-

pletes the proof of (4.11). If the m = 0 lower bound of (2.11) is applied
to (4 .11 ) along with the bracketing inequality (2 . 7), then we obtain

which is the lower bound of Theorem 2.1 for k large.
The advantage of the Feynman graph proof of Theorem 2.1 is, first,

that the lower bound obtained is valid for all k, and not just k large. Secondly,
the upper and lower bounds of (2.1) do not depend on T, while the ones
just derived do, and get worse as T increases.

5. DISCUSSION

We have shown that the groundstate energy E(~,) of H 1 (~,) and the trace
Tr [exp ( - TH2(À»] ] both have divergent perturbation series with rates
of divergence which require the generalized Borel method of Grecchi and
Maioli for summation. Unfortunately, it has not yet been proven that
either of these objects satisfies the hypotheses necessary for summation,
although they are expected to. The problem is a technical one. In order
to apply the generalized Borel summation to a function, a certain bound
on the remainder term in its Taylor expansion must be proven uniformly
on a sector of the Riemann surface of ln (z) [1] ] [2 ]. This seems to be hard
to do (see [1] ] for a partial result for E(~,)).

Secondly, it would be desirable to extend the divergence estimates for E(/))
to all eigenvalues of H 1 (~,). In general, it would be interesting to know
under what hypotheses on V(x), the divergence of the perturbation series
for one eigenvalue of

Vol. 46, n° 2-1987.
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implies divergence of the perturbation series for all eigenvalues. Also, for
the examples V(x) = x2m or = exp (cor), if the ith eigenvalue 
has asymptotic series E~(~) ~ then the dominant contribution to the

large k behavior of aik is independent of i( [m -1)k ] ! for x2m, and exp (03B12k2/4)
for exp (cue)). It would be interesting to know if this connection can be
proven without knowing the asymptotics of ak for all i. In this way, the

exp (ck2) divergence rate for the ground state energy perturbation coeffi-
cients in Theorem 2.1 would extend to all higher eigenvalues of H1(À).

In [3 ], Grecchi et al. give an argument which strongly suggests that Pade
approximants will not converge to the eigenvalues of H1(À). Our Theo-
rem 2.1 provides further evidence for this claim, since it shows that the
coefficients ak violate the condition

which is a sufficient condition for uniqueness of the Stieltjes moment pro-
blem associated with Pade approximants [15, Th. 1. 3 ].

Finally, the two dimensional exponential interaction field theories were
mentioned in [1] as possible condidates for generalized Borel summation.
We wish to point out that this will not be true since these theories only
have asymptotic perturbation series to a finite order. That is, derivatives
in the coupling constant ~, at ~, = 0+ fail to exist beyond a certain finite
order (see [13, p. 313 ] for discussion).
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