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Partial *-algebras of closed operators
and their commutants

I. General structure

J.-P. ANTOINE and F. MATHOT

Institut de Physique Theorique, Universite Catholique de Louvain,
B-1348, Louvain-la-Neuve, Belgique

Ann. Poincaré,

Vol. 46, n° 3, 1987, Physique ’ théorique ’

ABSTRACT. - Let D be a dense domain in a Hilbert space and M a
collection of closed operators defined on ~, together with their adjoints,
and having D as a common core. We say that M is a partial Op*-algebra
on ~ if it is stable under suitable operations of involution, addition and
(partially defined) multiplication. In this paper, the first of two, we intro-
duce two classes of such objects, hereby generalizing previous results

by W. Karwowski and one of us (JPA). We discuss their algebraic properties
and their extensions by continuity to larger domains, and we describe
various locally convex topologies that can ~e defined on them. The second
paper will be devoted to commutants and bicommutants of partial Op*-
algebras.

RESUME. - Soient ~ un domaine dense dans un espace de Hilbert et
9M une famille d’operateurs fermes definis sur ~, en meme temps que leurs
adjoints, et ayant D pour c0153ur commun. La famille 9Jl est appelee Op*-
algebre partielle sur D si elle est stable sous des operations appropriées
d’involution, d’addition et de multiplication (partiellement definie). Dans
cet article (Ie premier de deux), on introduit deux classes de tels objets,
generalisant des resultats anterieurs de W. Karwowski et l’un des auteurs
(JPA). On discute leurs proprietes algebriques et leur extension par conti-
nuité a des domaines plus grands et on decrit differentes topologies loca-
lement convexes dont on peut les munir. La deuxieme partie du travail
sera consacree aux commutants et bicommutants des Op*-algebres par-
tielles.
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300 J.-P. ANTOINE AND F. MATHOT

1. INTRODUCTION

In the algebraic approach to quantum theory, whose origins go back
to Heisenberg’s matrix mechanics, the basic object is the C*-algebra of
observables, and symmetries are realized by automorphisms. Each state
determines, through the familiar Gel’fand-Naimark-Segal construction,
a representation of the algebra by bounded operators in a Hilbert space.
A useful tool then is the von Neumann algebra generated by the repre-
sentation. This language is by now standard e. g. in quantum statistical
mechanics (see the monograph of Bratteli and Robinson [1] ] for a review).
Now many authors consider this framework as too narrow. On one hand,

there are systems, typically spin systems with long range interaction, where
the thermodynamical limit fails to exist in a C*-topology [2 ]. On the other
hand, unbounded operators may be more natural: take, for instance,
symmetry generators or boson field operators. Therefore structures more
general than (normed) algebras of bounded operators have been proposed.

First appeared algebras of unbounded operators, originally introduced
through the example of the field algebra [3-5 ], and subsequently deve-
loped into a full-fledged theory under the name of [6-8 ].
Among these, a subclass that seems especially suited to the description
of quantum observables « a la Dirac » is that of [9] ] [10 ].
In all cases the key point is that all the operators in the algebra are defined
on the same dense domain and leave it invariant.

However, in several situations, obtaining a common invariant domain
is difficult or unwieldy, sometimes impossible. Think, for instance, of a
non-relativistic Hamiltonian H = - 1B + V(x), with V a non-smooth

potential: Schwartz space ~ is in general contained in the domain of H,
but it is not invariant under it; yet f/ is a very natural domain to use.
Another example is a recent result of Horuzhy and Voronin [72] concerning
a Wightman field theory : when the latter is formulated, as usual, in terms
of the Op*-algebra of polynomials in the basic fields, on the Garding
domain ~, the von Neumann field algebras, both local and global, do not
in general leave çø invariant. Now, if we require only that our unbounded
operators have a common dense domain, but do not necessarily leave it
invariant, we cannot multiply them freely : the resulting structure is no

longer an algebra, but only a partial *-algebra. This concept has been
introduced and studied systematically by W. Karwowski and one of us
(JPA) in a series of papers [7~-7~]. The aim of this work is to continue
that analysis.

In the present paper, the first of two, we will study partial *-algebras
of closed operators, both at the algebraic and topological level. In Part II,
we will analyze systematically the various notions of commutants and

l’Institut Henri Poincaré - Physique theorique



301PARTIAL *-ALGEBRAS OF CLOSED OPERATORS AND THEIR COMMUTANTS. - I

bicommutants arising in that context, thus generalizing several results
obtained in [77] ] and [7~] for Op*-algebras. ’This may prove important
e. g. for the representation theory of our objects (see ] for a first discussion
in that direction) and various aspects of the theory, familiar for W*-alge-
bras [1 ]. We will follow mostly the terminology and notation of [14 ],
except for some changes that have proven to be necessary; but the two
papers are essentially self-contained.

Part I is organized as follows. In Section 2 we begin by a discussion
of abstract partial *-algebras, with some emphasis on the problem of (non)
associativity of a multiplication that is only partially defined. Section 3
introduces the main object of study, that we call partial 
To be more specific, let jf be a Hilbert space, ~ a dense subspace of Jf
and consider the following set of closed operators (A* denotes the adjoint
of A and D(A) its domain) :

It turns out that two different structures of partial *-algebra may be defined
on subsets of E(D), leading respectively, to strong and weak partial Op*-
algebras. We analyze their algebraic properties and their mutual relations.
Section 4 is devoted to natural extensions of a partial Op*-algebra to
larger domains. Finally, in Section 5, we describe various topologies that
may be defined on partial *-algebras and will be needed in Part II. We
conclude, in the Appendix, by describing a class of pathological examples,
extending a construction due to Kürsten [17 ].
Throughout the realization of this work, we have benefited from dis-

cussions with W. Karwowski, J. Shabani, G. Epifanio and C. Trapani,
and also from private communications from K-D. Kursten and G. Lassner.
It is a pleasure to thank them all.

2. ABSTRACT PARTIAL *-ALGEBRAS

2. A. General definitions.

The definition of an abstract partial *-algebra is due originally to Bor-
chers [18 ]. We reproduce it for convenience.

DEFINITION 2.1. - A partial *-algebra is a (complex) vector space 9t,
with an anti linear involution x H x+ and a subset r c 21  U such that :

Vol. 46, n° 3-1987.



302 J.-P. ANTOINE AND F. MATHOT

whenever (x, y) E r, there exists an element x o y ~ U with the usual
properties of the product :

Notice that we do not assume the o product to be associative (see § 2 . B
below).

Since not every product is defined in a partial *-algebra, it is natural
to consider the set of elements that can multiply a given element, from
the left or from the right. Similarly, for any subset 9~ c 9t, we define the
set of its left, resp. right multipliers :

In particular, for single elements :

This suggests to use a simpler notation :

The sets of multipliers L91 and R91 are vector subspaces of 9t. Also x E 
iff x + Let now run over all subsets of 9t. Then the set of all

spaces of multipliers exhibits a remarkable lattice structure [7~] ] [14 ],
due to the fact that the maps L : R ~ LR and R : 9t H form a Galois
connection. The smallest of such spaces are L9t and R~, which are inter-
changed under the involution : x E L iff Their elements, the
so-called universal multipliers, will play a crucial role in the sequel.
The element e is called a unit if e + - e, and for every x E  one has

e E L(x) and e ~ x = x ~ e = x. In this work we will consider only partial
*-algebras with unit. This is in fact not a limitation, since every partial
*-algebra U without unit can be embedded in a larger one Ue which has
a unit, exactly as for *-algebras [1 ]. The extended partial *-algebra 9tg
is defined as the set of pairs (x, (x), x E, with the following rules :

. vector space structure :

. involution :

. partial multiplication:

(x, a) E L(( y, ~3)) iff x E L( y), and (x, Ct) 0 ( y, ~3) _ (x ~ y + ay + 

It follows that (o, 1) is a unit in and U may be identified with the
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303PARTIAL *-ALGEBRAS OF CLOSED OPERATORS AND THEIR COMMUTANTS. - I

subset {(x, 0), x e 9t} of e. As usual, we write (0, 1) --_ e and (x, a) = x + ae,
as suggested by the rules written above.
Given any mathematical structure, a substructure should be defined as

a subset stable under all the operations at hand. Hence we put :

DEFINITION 2.2. - A *-subalgebra of a partial *-algebra U is a vector
subspace 9Jl of U such that :

i ) 
ii) 
iii) whenever x, y E 9M and x E L( y), then x 0 y E 9M.

It follows that the intersection of any family of *-subalgebras of U is one
again. Thus given any subset R c U, there exists a smallest *-subalgebra
containing it, denoted 9M[9t], and called the *-subalgebra generated b y 9~.
For concrete examples, see Refs. [13-15 ].

Before proceeding, it is worth considering some examples of the abstract
structure described so far.

Example 1. 2014 The simplest class of partial *-algebras consists of those
obtained from topological *-algebras by completion. Let 9to [L] be a non-
complete topological *-algebra. Then the multiplication x ~ yx, x ~ xy
is continuous for every but not jointly continuous in general,
i. e. (x, y) H xy is in general not continuous from 9to[~] ~ into

2Io [L]. In that case the multiplication cannot be continued to the whole

completion U ~ U0 [03C4]: W is only a partial *-algebra, since xy is defined
only (by continuity) if one of the factors belongs to o. Thus L9t = R9t = ~o .
Partial *-algebras of this type, introduced by Lassner [19 ], are called
topological An example is the completion of a left Hil-
bert algebra [20, § 10 .1 ]. Another one is the space U ~ Lp[a, b ] on a
finite interval, obtained by completion in the Lp-norm of 9to = C [a, b ],
with pointwise multiplication [19 ].
Example 2. - Operators on scales or lattices of Hilbert spaces.
Let be a scale of Hilbert spaces (the argument is the same for

a general lattice) :

An operator on such a scale is defined by a unique maximal representative,
that is, a bounded linear operator A: Jfp -+ with p mini-
mal and q maximal, which in turn is extended by natural injections to a
linear map -+ Clearly the product A . B of two such ope-
rators is well defined only if it can be factorized continuously through some

-
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304 J.-P. ANTOINE AND F. MATHOT

Then the set of all operators on the scale is a partial *-algebra [13 ]. The
same situation prevails for large classes of partial inner product spaces [21].

Example 3. Closable operators on a fixed dense domain.
Let H be a Hilbert space, D ~ H a fixed dense domain, and consider

the following set of closable linear operators [77]:

where A* is the adjoint of A and D(A) its domain. If we consider the subset
~f) consisting of those operators A such that AfØ c ~, A *fØ c fØ

and take their restrictions to ~, we get a *-algebra of (in general) unbounded
operators, denoted L+(D) by Lassner [8] and bD by Epifanio et al. [d] [77].
This is the arena for the theory of Op*-algebras. So ~(~, £) provides a
natural generalization, and if turns out that several structures of partial
*-algebras may be introduced on subsets of ~(~ ~f). This will occupy
us for most of the sequel.

2 . B . Associativity.

No requirement of associativity was made for the partial multipli-
cation in Definition 2.1. The difficulty is that the usual rule does not make
sense without qualifications. Relaxing it slightly, we encounter several
possibilities. For instance, we may try the following :

DEFINITION 2.3. - The partial *-algebra U is called associative if

the following holds for any ~,~,ze9t: whenever x E L(y), y E L(z) and
x o y E L(z), then y o z E R(x) and one has :

Although it looks natural, this condition is too strong and rarely realized
in practice, not even for quasi *-algebras (see below). However, for most
purposes, a weaker notion is sufficient.

DEFINITION 2.4. - The partial *-algebra U is called semi-associative
if the conditions of Def. 2 . 3 are verified for all elements x, y e 9t, z E R9t.
In other words, if y E R(x) implies y ~ z E R(x) for every z E R9t and Eq. (2 . 2)
holds.

The last condition may be reformulated in any of the following equi-
valent forms :

i ) R9t maps R( y) into itself by right multiplication, for every 
E L(z) implies x o y E L(z) for every x E L9t.

iii) L9t maps L( y) into itself by left multiplication, for every 

l’Institut Poincaré - Physique théorique



305PARTIAL *-ALGEBRAS OF CLOSED OPERATORS AND THEIR COMMUTANTS. - I

Thus, in a semi-associative partial *-algebra, the sets L9t, R9t are in fact
algebras. Notice also that, contrary to associativity, semi-associativity
is not automatically inherited by a *-subalgebra 9K c 9t. since 9M may
have more universal right multipliers than 9t.

PROPOSITION 2.5. - Every quasi *-algebra is semi-associative.

Proof. - Let ~ be a quasi-*-algebra, with distinguished algebra
~o = R9t = L9t. For a given x E 9t, we verify the statements of Def. 2 . 4.

i ) If x E 9to, R(~)=9t and there is no restriction on y or y ~ z.
ii) If x E  B o, R(jc) = so that y, z and yoz all belong to ~o .

In both cases at most one of the three elements x, y, z does not belong
to o. Take, for instance, x, Then y = lim ya, 
For each a E I, the associativity relation holds in x ~ ( y« ~ z) = ya) ~ z,
and remains true in the limit ya -+ y. II

In general a quasi-*-algebra need not be associative. If, in Definition 2 . 3,
3/e9tB~ then x and z have to belong to and we are in the same

situation as in Prop. 2 . 5. On the other hand, if it

might happen that x ~ y E 9to and y, which case associativity
breaks down. If we take, for instance, the quasi-*-algebra b] intro-
duced above, we get precisely that situation for the following choice.
Let y E 9to vanish in a neighborhood of some interior point to E (a, b),
x be continuous except for a simple jump at to and z be discontinuous,
with at least a jump in the support of y; then x o y E 9to and y o z ~ U0,
so that associativity does not hold.
A natural question is whether (semi-) associativity is preserved upon

adding a unit. The answer is twofold.

PROPOSITION 2.6. - The extended partial *-algebra 9t~ is semi-asso-
ciative iff N is semi-associative.

Proof. - For x, y, we write 
with x, y, We notice that iff zER.

i ) Let 9t be semi-associative. Then y E R(x) is equivalent to y E R(x).
For every z E R9t, this implies y o z E R(x) and therefore y o z + 03B2z + yy E R(x)
by linearity, i. e. y ~ z E R( x) for every Since Eq. (2 . 2) extends
trivially from ~ to ~e, it follows that ~e is also semi-associative.

ii) The converse implication follows by restriction from 9tg to U since
= R9t + ~e. II

The result just proved does not extend to associativity, since then the
argument of ii) above breaks down. Indeed, let y E L(z), x E L(y) and
 o y E L( z). This is equivalent to y E L(z), x E L( y) and x o j; + ocy + 03B2x E L(z),
and therefore for the given ~i. But this need not imply

Vol. 46, n° 3-1987.



306 J. -P. ANTOINE AND F. MATHOT

~- o y E L(z) if L(z), and so the associativity of ~ does not entail that
of ~e. The latter does follow, however, if in ~, ;c o ~ E L(z) implies x E L(z),
which is precisely the case for semi-associativity 
That x o y + 03B2x = x o (y + 03B2) ~ L(z) is not equivalent to x o j; E L(z)

is easily seen on the quasi-*-algebra ] of Example 1. Indeed, let
again to E (a, b) and x a function with a single discontinuity at to. Then,
if y is continuous and 0, the product x(y - y(to)) is continuous,
i. e. belongs to 210, whereas xy is discontinuous. Thus, if z tt 210, the former
belongs to L(z) and the latter doesn’t. Of course, in that case 1 E b ],
but this example shows that the condition may fail even for quasi-*-algebras.

2. C Commutants.

As indicated already in [14 ], there is a natural notion of commutant
in a partial *-algebra, namely for 9t c :

and 

If 91 is stable under the involution, 9T is also, and it is a vector subspace
of U by distributivity (Def. 2. I ii )). However, in the general case, 91’ need
not be a *-subalgebra of 9t, even if ~ is associative. Indeed, let x, y E 9f
and x E L(y). Assume Then we may write successively using
associativity (a E 9t):

i. e. x o y E 9T. The same result follows if E but we need at least
one of these conditions. For quasi-*-algebras however, it works always.

PROPOSITION 2. 7. - Let 9t be an arbitrary quasi-*-algebra. Then the
commutant 9T of any +-invariant subset 9t is a *-subalgebra of 9t.

Proo, f : - Consider the relation (2 . 3). If R c 9to and x E L(y) then a
and one of x or y belong to o. If 91 c then 91’ c so that x and y
belong to In any case, at most one of x, y, a is not in so that all
products are defined, and the equalities follow by continuity as in the proof
of Prop. 2. 5. N ,

2 . D . Symmetric partial *-algebras.

Once again a notion familiar for *-algebras extends naturally to partial
*-algebras [9 ] [22]. First we have to define inverses. Let 9t be a partial
*-algebra, with unit e. Given x e 9t, the element y E  is called an inverse
of x if y E M(x) = L(x) n R(x) and ~- o y = y ~ x = e. In general an inverse
need not be unique, because of the lack of associativity of 9t.

Annales de l’Institut Henri Poincaré - Physique theorique



307PARTIAL *-ALGEBRAS OF CLOSED OPERATORS AND THEIR COMMUTANTS. - I

DEFINITION 2.8. - A partial *-algebra U with unit e is called symmetric
if, for every x e ~ one has ~-~ E L(;c) and (e + x+ ~ x) has an inverse in 9t.

We will see in Part II that symmetric partial *-algebras of closed ope-
rators have distinctly better properties, exactly as for *-algebras. For
quasi-*-algebras, however, the notion of symmetry is not very interesting.
Indeed, if a quasi-*-algebra is symmetric, every x must belong to ~o
by the first condition, i. e. ~[ == 9~ the only symmetric quasi-*-algebras
are the symmetric *-algebras !

3. PARTIAL *-ALGEBRAS
OF MINIMAL CLOSED OPERATORS

We come back to Example 3 of Sec. 2: Jf is a Hilbert space, ~ is a fixed
dense domain in ~f and we consider the *-invariant family of closable
operators ~(~, ~f) defined in (2.1). On the set ~(~, we introduce

the following equivalence relation :

Then the set of equivalence classes is in one-to-one correspondence with
the set :

by the relation : [A] ] =&#x3E; Ao = A r ~ for ~f). The set ~o(~, ~)
carries a natural involution, namely :

In this notation, the maximal Op-*-algebra on ~ is the subset 2+(~)
of those Ao E ~o(~, ~) such that AoÇø c ~ and c çø. On rco(EØ, ~)
itself, with its involution (3.3), one may introduce several structures of
partial *-algebras [23 ]. However, in accordance with the previous
works [13] [14] [15], we prefer to take the closure of the elements ofrøo(, J~),
What we get is the set ~(~) defined in (1.1), which can also be written
as follows :

The elements of 0152(EØ) are called ~-minimal, i. e. they have ~ as a core.
Given A E ~(~, we define the two operators

Both belong to 0152(!Ø) and both are independent of the choice of A in its
equivalence class mod (3.1), i. e. the operation A ~ A =1= defines an invo-
lution on E(D). Thus, through closure, E(D) is in one-to-one correspon-
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dence with ~o(~~)~~(~,~)/-, and for each A E 0152(fØ), we havethe following scheme :

where the operators in the middle belong to 6:(~) and those on the rightin general do not (they are called ~-maximal). If one of them does, theyboth do and one gets A* = A*. Such an operator is called standard [7~1This is the case e. g. when A is normal or self-adjoint.
We will now try to define a structure of partial *-algebra on the set 0152:(~).The key is the following (trivial) lemma [13 ] :
LEMMA 3.1. 2014 Let A, ~f) verify the conditions :

Then the operator A(B f fØ) is closable and the domain of its adjointcontains çø. II

When i ), ii) are satisfied, we have in fact two natural ways of definin ga product that belongs to ~(~), namely :
"2014 

- )~;J .
Hence the set C(~) may be given two, distinct, structures of partialalgebra, that we will call strong and respectively.

3. A. Strong partial Op*-algebras on ~.

On the set 0152(fØ) we consider the following operations:
. vector space structure:

. involution : A =1= == A* ~ ~

. (strong) multipliers : A E LS(B) or BE RS(A) iff

. partial multiplication : A . B = A(B f Çø) for A E L S(B)

. unit I, the identity operator.
Then, with these operations, 0152(fØ) verifies all the requirements of Def. 2.1,

Poincaré - Physique theorique



309PARTIAL *-ALGEBRAS OF CLOSED OPERATORS AND THEIR COMMUTANTS. - I

except ff); namely it might happen that Ce R(A) n R(B) and C ø R(A+B),
the reason being that D(A +- B) need ~ contain D(A) n D(B) = D(A + B) (1).
The general scheme is given by the following diagram, where each arrow
denotes a continuous embedding and ~+ denotes the completion 
in the (projective) topology induced by D(A) n D(B) (this topology may
be determined, e. g. by the norm !!/!!+=!! A~ BI + BI +!!/!!

A whole class of pathological examples, generalizing that of Kursten [17],
is discussed in the Appendix. The proofs of all these statements may be
found in [14, Addendum ].

Nevertheless it is useful to consider the set 0152(~) equipped with the
operations just described. The resulting structure will be denoted (T(~)
in the sequel.
Thus we get a first class of partial *-algebras, by considering, as in Def. 2 . 2,

vector subspaces of 0152(2Ø) containing I and stable under the. multipli-
cation, with the additional requirement of distributivity, i. e. that L(C)
be a vector subspace for every C E These are called strong partial Op*-
algebras on D.
The universal strong multipliers of (tS(2Ø) are easily characterized [14 ],

in terms of the domain Eè(0152:) = n D(A)  Eè:

The. multiplication on (tS(2Ø) is in general not associative (see [14 ],
Proposition 3.2) and counterexamples are easily found, e. g. with diffe-

rential operators on finite intervals. However, it is always semi-associative,
provided that C(~) is fully closed, by which we mean ~ = ~(0152) (see Sec. 4
below).

PROPOSITION 3.2. - Let the set &#x26;(~) be fully closed. Then the. mul-
tiplication on C~) is semi-associative.

Proof 2014 Since E = 0152(2Ø) is fully closed, RS0152 consists of all bounded

operators mapping D into itself. Let B E RS(A) and C E Then B. C E RS(A)
for we have, Vf E ~ :

(1) This fact, originally overlooked in [13] [14], was pointed out by K.-D. Kursten and
G. Lassner (private communication and [17], where a tricky counterexample is given).

Vol. 46, n° 3-1987.



310 J.-P. ANTOINE AND F. MATHOT

The last inclusion follows from the boundedness of C :

hence

It remains to verify the relation (2 . 2). For any f E ~, we have Cf E çø and
therefore :

and then Eq. (2.2) follows by taking closures. II

3 . B. Weak partial Op*-algebras on 9Ø.

As said above, the lack of distributivity of the. multiplication in ~(~)
comes from the fact that D(A+ B) may be too small. A way of circumventing
this defect is to use instead the 0 multiplication defined in Eq. (3.7).
Given A, B E (t(~), define the relation A E L"’(B) or B E RW(A) by the two
conditions :

It is clear from Eq. (3.6) that (SM1), (SM2) imply (WM1), (WM2), i. e.
LS(B) c Lw(B), where the inclusion is strict in general. Then, if A E L"(B),
we may define the product A 0 B.
The following properties are readily verified :

i ) For f E ~, (A 0 B)/ = ’.

ii) (A 0 B) =1= = B =1= 0 A *.

iii) Distributivity: since D((A + B)*) ~ D(A*) ~ D(B*) for arbitrary
operators A, B, the set LW(C) is a vector space for each C E (t(!Ø), and simi-
larly for Rw(C) (but we may still have D(A + B) ~6 D(A) n D(B) !). Then
we get, for f and C E RW(A) n 

hence, by closure: (A + B) o C = (A o C) + (B a C).

Annales de l’Institut Henri Poincare - Physique theorique
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Putting all these results together we get :

PROPOSITION 3.3. - Let ~w(~) denote the set 0152(fØ) equipped with
the + addition, involution and the 0 multiplication defined on
the pairs A, B for which A E Lw(B). Then 0152W(~) is a partial Op*-algebra,
with unit I. II

In analogy to the previous case, we may now define a weak partial 0/?*-
algebra of operators on D as a *-subalgebra of Ew(D), in the sense of Def. 2 . 2.
As for 0152S(~), the universal multipliers are bounded operators :

where we have introduced the domain Eè*(0152:) = n l D(A*).
Clearly: 

From this follows the analogue of Proposition 3 . 2:

PROPOSITION 3.4. - Let ~=~(C). Then the partial Op*-algebra
(tW(Çø) is semi-associative.

Proof - The assumption ~ = ~*(0152:) implies that C E is

bounded and maps ~ into itself. Then, given A, B such that 
we obtain B a C E R"(A) as in Prop. 3 . 2, since we have, for any f E ~ :

The last inclusion results from the boundedness of C :

Finally the relation (2 . 2) is immediate :

REMARK 3 . 5. - One may also define on (t(!Ø) other - kinds of multi-
pliers, intermediate between the weak and the strong ones. For instance,
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we say that B is a mixed right multiplier of A if they verify conditions (SM 1)

We denote this fact by or 

Similarly, we say that B E RM(A) or A E LM(B) if they verify the condi-
tions (WM 1 ) and (SM2), i. e. for /e~:

Thus we get BE RM(A) iff A =1= eL~(B~), and iff 

Clearly the operation $ is not an involution for these types of multipliers,
and they do not generate new structures of partial *-algebras on @(~).
Concerning the problem of distributivity, LM(C) and RM(C) are vector
subspaces of 6 for any C, but LM(C) and RM(C) need not be. Similarly
the spaces LM(C) and RM(C) have better topological properties, as we will
see in Sec. 5 A below. We will come back to these asymmetric multipliers
in Part II.

REMARK 3.6. - The notation and terminology used in this paper
reflect the presence of the two structures of partial *-algebra on 0152(~),
and this has compelled us to diverge from the conventions of [7~] ] [14 ].
Indeed conditions (SM1), (SM2) were denoted (M1) and (M2) there, and
the operators called simply multipliers : A E L(B), etc. Similarly (WM 1 ),
(WM2) were previously denoted (*M 1), (*M2), for *-multipliers : A E L*(B),
etc. Finally, the two conditions i ), ii) of Lemma 3.1 (which coincide with
(SM1), (WM2) if A, were called (WM1), (WM2) in [7~] ] [7~1,
for weak multipliers.

3 . C . Strong vs. weak partial Op*-algebras.

In order to make contact with our previous work [7~] ] define 0152*(~)
as the set of all adjoints of the operators of 0152(~):

It was shown in [7~] that the set 0152*(EØ) is a partial *-algebra with respect
to the following operations :

. vector space structure : A-t-B= [(A* + B*) [ ~ ]*, ÂA= [2A* [ ~ ]*
. involution : (A f ~)*

(this implies = A =1= i !Ø and A~~ = A $ *)
.partial multiplication : A * B = ~)]*, defined whenever
A E LW(B), in the sense of conditions (WM1), (WM2).
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Thus elements of (t*(!Ø) are all ~-maximal operators, i. e. those that

verify A = = A =1= * .
There is a one-to-one correspondence between the sets C(~) and 0152*(!Ø),

given by the linear map j: 0152(~) ~ 0152:*(~) and its inverse :

Since A E LS(B) implies A E Lw(B), but not the converse in general, it follows
that j respects the partial *-algebra structure :

but j- 1 preserves only linear combinations, not products.
The situation is best understood in terms of the notion of homomor-

that we recall from [14 ].

DEFINITION 3.7. - A homomorphism of a partial *-algebra 9Jl into
another one is a linear map ~ 9t such that :

i ) 6(x + ) = [6(x) ] + ~
ii) if x E L(y) in KR, then in 9t and (y(~)o~(j;)=7(xo~).
The map 03C3 is an isomorphism if it is a bijection and 03C3-1: 9t ~ M is

also an homomorphism.
Notice that x E R9K, resp. y E L9K, implies 7(x) E resp. cr( y) E 

Also if e E 9M is a unit, is a unit in c 9t.
Let now M c Es(D) be a strong partial Op*-algebra, ~j(M) ~ E*(D)

and Mw~j-1(M*) ~ Ew(D). Then j: M ~ M* is a homomorphism, the
identity i: M ~ Mw is a homomorphism, and j : is an isomor-

phism. In particular :

The same relationship exists between 0152(!Ø), (t*(!Ø) = j(0152(!Ø)) and

= y- ~(6:*(~)) (although, strictly speaking, 0152(!Ø) is not a partial
*-algebra, the notion of homomorphism still makes sense).
Although it is very natural, Definition 3.7 does not exclude certain

pathologies. For instance the range 7(9M) need not be a subalgebra of 91,
if 6 is not an isomorphism. In that case, indeed, there will be elements x,
y ~ M such that but in 9t. Then 03C3(x) o 03C3(y) is a
well-defined element of but it need not belong to Of course it

may also happen that 7(XR) is a sub algebra of R, e. g. if 03C3 is surjective. But
then another pathology may arise. Take for instance the bijection
j : A ~ A t t from 6:(~) onto 0152*(~). If but then
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B t t = A * B = j(C), with C = (A * B) $ $ but C cannot be fac-
torized as A. B, since the latter does not exist !

In that particular case, we have circumvented the difficulty by intro-
ducing on S(~) the weaker product a, in effect pulling back to (t(!Ø)
the partial *-algebra structure of (t*(Çø): this yields precisely 0152:W(~). For
instance, the operator C above does factorize in C = A 0 B.

Exactly the same construction may be performed whenever the homo-
morphism 03C3: M ~ R is injective, and its range is a subalgebra of R.
For every pair x, y E 9M such that E L((7(y)) in 9t, one defines the new
product x 0 y = 03C3-1(03C3(x) o 6( y)). In this way M acquires a new, weaker,
structure of partial *-algebra, pulled back from c 9t. Conversely,
a linear bijection 6 from M to a set R yields, by isomorphism, a structure
of partial *-algebra on the image thus the map j: 0152:(~) ~ (t*(fØ)
provides (t*(!Ø) with the structure transported from (tW(~).

4. CLOSED AND FULLY CLOSED EXTENSIONS

In the theory of Op*-algebras, it is well-known that the so-called closed
and self-adjoint algebras have better properties. What is the corresponding
situation for partial Op*-algebras ?

Let 9K be a subset of 0152:(~). It defines on ~ the so-called topology,
given by the For this (projective)
topology, the natural domain = 1 D(A) is complete, but need
not be the completion Similarly for

= c 6;*(~) (notice that on ~). Hence one has in general:

We say that 9M is closed if ~ _ ~ [t~ ], fully closed if ~ = ~(9M), 
tially self-adjoint if D(M) = fØ*(ID1) and self-adjoint if fØ = D*(M). For
Op*-algebras [tM] = !Ø(ID1), so that closed and fully closed are syno-
nymous, and in that case essentially self-adjoint has its usual meaning
~[~] ==~(9M).
An interesting consequence is that, for a fully closed subset 9K c C(~),

its universal strong right multipliers, map ~ into itself. The same
is true for RwM if9M is self-adjoint.
As is well-known, an Op*-algebra U may always be extended by conti-

nuity to a (fully) closed Op*-algebra  on the domain ~(9t), isomorphic
to 9t. Here the situation is more complicated, for three reasons :

a) we have two different possible extensions, one to ~(t~ ], the other
one to !Ø(ID1);
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b) we have to distinguish between extensions in the strong and in the
weak structure;

c) we are dealing with equivalence classes of operators, as discussed
in Sec. 2.

Point c) is not a problem, however, as the next lemma shows.

LEMMA 4.1. - Let 9M be a subset Then the following inclusions
hold : 

-

Furthermore all three sets in (4. 2) contain the same bounded operators.

Proof Starting with closable operators, we have the obvious inclusions :

On each space, we may consider the equivalence relation corresponding
to the domain in question, as in Eq. (3.1). But in fact the three equivalence
relations are the same. Indeed, ~f) coincide on ~(9K), they
coincide a fortiori on D. Conversely, ifAi (Ai - A2) D = 0,
which is a bounded operator. Hence (Ai - A2) í EØ =0 on ~f, and, by
restriction, (Ai - A2) í ~(9M)=0 as well. The argument is identical for 
and also for an arbitrary non-zero bounded operator. Thus the equiva-
lence relation on ~(~(9K), resp. is simply the restriction
nf the one defined on ~(.~..~1. and therefore

Taking closures (which is a one-to-one operation), we get Eq. (4.2). jt

Under additional assumptions, we may get more than the inclusions (4 . 2).
Indeed :

LEMMA 4 . 2. - be barrelled. Then ~(,~ [t~ ] ) = CL(~).

Proof : 2014 Since ~ is barrelled, every element X E &#x26;(~) is continuous
from ~ into Jf, by the closed graph theorem. It follows that 
on EØ. Hence, given any Xe~(~), ] is contained in D(X) and is a
core for X. This means that X E (t(iø [t~ ]), which proves the assertion. II

Of course the argument works if ] is a Frechet space, but then

~ = ~[~] ] and there is nothing to prove !
Concerning Point b) above, it has been shown in [7~] that every strong

partial Op*-algebra 9M admits a unique closure which is a closed

partial Op*-algebra on ~, isomorphic to 9M. The set 9M consists of the
same operators as 9M, but considered as closures of their restriction to ~,
and the relation A E L(B) holds in 9M iff it holds in 9K.

Since ~ c ~(9K) c D(A) for every A E !Ø(9Jl) is a core for A. Denote
by 9R the set of all operators from 9K, but considered as closures of their
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restriction to i. e. as elements of @(~(9K)); obviously ? is fully
closed. Then, as was shown in [14 ], the identity map gives XR a structure
of strong partial Op*-algebra over denoted and the identity
i : ~ -~ 9M is a homomorphism, but not necessarily an isomorphism.
Indeed, there might be less multipliers in @s than in 9M, since B!Ø c D(A)
need not imply c D(A).
However, this phenomenon does not take place for weak partial Op*-

algebras. Indeed :

PROPOSITION 4.3. - Let 9M = be a weak partial Op*-algebra
over ~. Denote by @ the same set of operators, but viewed as closures of
their restriction to ~(9M). Then @ is a fully closed weak partial Op*-algebra
on !Ø(IDl), denoted ~w, and the identity i : -~ @w is an isomorphism.

Proof. 2014 Take first A, B E XM such that A E Lw(B) in (tW(!Ø). Then for any
g E D(B) n D(A 0 B) and fo E!Ø, we have :

Since ~ is a core for every element of 9M, any vector f E D(A =1=) n D(B $ a A =1=)
may be approximated in the graph norm of A * by a sequence 

~ A $ f. Hence we get :

since /eD(B* a A =1=). Of course this does not imply that

strongly. Also (B * a = B $ (A $ fo"~), but (B * 0 cannot neces-

sarily be factorized in the same way, since A $ f need not belong to D(B*).
The relation (4 . 3) is true, in particular, for every f, ge~(9M). But this

means that Bg E D«A =1= r fØ(9Jl))*), and A * f E D((B ~(9M))*) = D(B*), i. e.

The converse implication being evident, the relation holds
in 0152W(!Ø) iff it holds in (tW(!Ø(9Jl)). Furthermore, the involution ~= and
the multiplication a, which depend on the domain, are in fact the same
for every domain ~1 such that ~ ~ !Ø1 £; ~(~t), as can be checked readily.
This proves the assertion. -
Combining Proposition 4 . 3 with the results obtained in [14 ], one gets

finally the following extension theorem.

THEOREM 4.4.2014 Every subset 9[K of (t(Çø) determines a closed subset XM
of ~(~ [t~ ]) and a fully closed subset XR of ~(~(~t)), where all three sets
consists of the same closed operators. Then :

i ) if 9M = Ms is a strong partial Op*-algebra, it determines two strong
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partial Op*-algebras and three weak ones ~"’, 9M", the rela-

tionship between these six partial Op*-algebras is given by the following
diagram, where ~ denotes a homomorphism and =&#x3E; an isomorphism :

is a weak partial Op*-algebra, it has weak extensions ~W
and ~W, both isomorphic to II

The conclusion of the whole analysis is that, without loss of generality,
a strong partial Op*-algebra may always be assumed to be closed, but
not fully closed, whereas a weak partial Op*-algebra may always be taken
to be fully closed. This applies in particular to and (T~), respectively.

5. TOPOLOGIES ON PARTIAL Op*-ALGEBRAS

As for Op*-algebras [8 ], one may introduce on partial *-algebras of
operators two classes of natural topologies, called respectively quasi-
uniform and Jf-weak. They generalize the familiar topologies of von Neu-
mann algebras [1 ].

5 . A Quasi-uniform topologies.

These topologies are specific to subsets 9t of6(~) where they are defined
and they depend explicitly of the (left or right) multipliers of 9t: hence they
depend on the product which is chosen, . or a.

The domain D itself will carry its projective topology tE, defined by the
seminorms We will denote by B(!Ø) the class of
tE-bounded subsets of D, i. E B(EØ) iff sup ~ Af~  oo for all A E 0152(EØ).
Given a subset 91 of E(D), containing I, consider a subset 2 c LwR,

containing I. Then one may consider on R a quasi-uniform 
defined by the seminorms :

where A and E B(~) is a bounded set of !Ø ].
Similarly, every subset ~ c R"’~, containing I, determines another quasi-

uniform topology on 91, r~(~), with seminorms :

(remember that L w91=l=).
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Clearly 21 c L2 implies 03C4l*(L1)  03C4l*(L2) on R ( means « weaker
than ») and ~1 c ~2 implies ~*(~1) ~ ~(~2). As particular cases, one has:

i ) 2 = or ~ = which in each case gives strongest left, resp.
right, quasi-uniform topology on 9t.

ii) 2 c or ~ c in which case one may replace 0 products
by . products in (5 .1), (5.2): these are the quasi-uniform topologies to use
for strong partial Op*-algebras.

In particular, given a subset 91 = 91*, its spaces of multipliers carry
natural quasi-uniform topologies : L~(91) on L~(91) on and
L*(91) == T~(91) n T~(91) on MW91 == n (i. e. Tj9t) is defined by all
seminorms I I . ~~ !! . simultaneously).

In the case of the whole space (t(fØ) the situation gets simpler. The quasi-
uniform topologies on C(~) are intermediate between the extreme ones :

. the strongest, or 

. the weakest, ~ ~ i*(I) = i*(I) corresponding to J~ = ~ = {I} and
given by the seminorms : 

"

However it follows from [14] that the three topologies! *, and

T~(L~) are equivalent whenever S is self-adjoint, ~ = ~*(0152). Then all
quasi-uniform topologies on 0152(!Ø) coincide. Similarly, if 91 = 9~, the
topologies 03C4lI(R) and !;(91) coincide on the space of multipliers RwR n 
their restriction will be denoted simply r~(9t).

Every quasi-uniform topology may be weakened by restricting the
bounded sets E to a particular subclass, in particular the finite
subsets of ~. In that particular case, we will denote the resulting topology
by i f(~), resp. Corresponding to i*, we recover in this way
the familiar strong*-topology (s*), with seminorms [1] ] [7~]:

Other familiar topologies on (t(fØ) [8] ] [2~] are:
. the strong topology (s), with seminorms 
. the weak topology (w), with 

Those four topologies on 6(~) are ordered as follows :

The results obtained in [7~] ] about quasi-uniform topologies may be
resumed as follows :

i ) (t(fØ) is complete in i* and afortiori in s* (this was shown independently
in [16 ]).
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ii) Spaces of multipliers in 0152:W(Çø) are complete in their natural topo-
logies : in T~(91) and ~(91), in and T~ (91), and, for ~=9~,
M"9t in and T *(91).

iii) Spaces of left or right multipliers in (tS(~) need not be complete
in the corresponding topologies 03C4l,rf,*(R). However, it follows from the

proof of [14, Prop. 5.7] that the spaces and of mixed multipliers
of 9t are complete in T~(9~), resp. T~~(9t), but the other ones and
LMR need not be. These facts will be useful in Part II.

iv) The partial multiplication (A, B) )2014~ A 0 B is separately continuous
from x into 0152:W(~) [T*]. The corresponding
result is true for (A, B) ~ A . B in (tS(Çø) and also for the topologies i,f.

REMARK 5.1. - All these topologies may be defined on ~(~, J~)
as well, as was, done for s* in [16 ], but then they are not Hausdorff. Taking
the quotient of ~(~, J~) modulo ~, as explained in Sec. 3, corresponds
precisely to the construction of Hausdorff spaces associated to ~(~, ~f),
i. e. ~) with the appropriate topology.

5 . B Weak topologies.

The quasi-uniform topologies introduced in 5. A on subsets 9t of (t(!Ø)
are very natural, but they have two drawbacks : they are specifically related
to a given subset and they are very unwieldy in practice. For that reason
we shall introduce another class of (locally convex) topologies, called
generically weak topologies. They generalize the one introduced under
the same name in [2~] and another one used in [16 ]. They will be used
systematically in Part II.

Let ff be a dense subset of Jf. Then we define the following topologies
on 6;(~):

. the ~-weak topology (~-w), with seminorms :

. the *-topology with seminorms :

Among these one finds familiar cases :
. the weak topology (w), also called ~-weak by [77]:

. the quasi-weak topology : qw - [2~] ]

. the quasi-weak *-topology: qw* _ 
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Several relationships between these topologies are immediate :
i) Jfi c $’2 implies  ~2-w, ~’2-w*.
ii) In particular, for ~ c jf 

Among those topologies we will use in particular the so-called 9t-weak
topologies, denoted 9~-w or 9~-w*, corresponding to subsets of the form :

where 91 is a subset of 0152:(EØ) containing I (hence Jf ~ ~ and thus
w - 9t-w - qw). The commutant topology of [7~] ] corresponds to

R=U’03C3, the weak unbounded commutant of a subset U c (t(!Ø). Such
topologies will be used in Part II to prove statements of the type : ’the
bicommutant 2I" is the closure of U in some topology t’ (since there are
many types of unbounded bicommutants, many different topologies will
be needed). Thus we postpone all results of this sort to Part II.
To conclude, we note the following relation among all topologies we have

introduced. On a given set 91 c (t(!Ø), for any c jf c and any
J~ c c one has :

REMARK 5 . 3. - Other types of topologies may be introduced on C(~).
For instance one may consider (t(!Ø) as a set of continuous linear maps
from ~ or !Ø(0152:) into Yt’, with the (strong) topology inherited from J~(~, ~f),
and similarly for 9t. More precisely, one may describe the continuity
properties of the. multiplication in (tS(~) by making the following iden-
tifications :

where each space of continuous maps on the r. h. s. is given its strong topo-
logy. Then it was proven in [13 ] that the. multiplication 91 x RsR ~ R. RS91
is jointly sequentially continuous and separately continuous. The same
result holds true in 0152:W(!Ø) for the 0 multiplication 91 x 0 

but here the space used in the definition of the topologies is !Ø *(91), not
EØ(91), since means B!Ø c D(A $ *) c EØ*(91).
For Op*-algebras, Arnal and Jurzak [25 ], and Inoue et al. [2~] have

defined several kinds of topologies, which generalize in a more direct
fashion the familiar topologies on von Neumann algebras [1 ]. In par-
ticular, [2~] ] contains an exhaustive comparison of all of these. Clearly
these new topologies have straightforward generalizations to partial
Op*-algebras, but we will not pursue that point, since those extensions
will not be needed for the study of (bi)-commutants developed in Part II.
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APPENDIX

NON-DISTRIBUTIVITY OF (tS(~)

Kursten has given in [17] a counterexample to the distributivity property of ~(~),
namely three operators A, B, C E (t(.@) such that C E RS(A) n but RS(A + B).
In this appendix we generalize that example substantially, so as to make it essentially
generic.
As in [17 ], we work with sequence spaces : ~ _ ~ 2, with { e~"~ ~ the canonical unit vector.

basis, and .@ = s, the Schwartz space of rapidly decreasing sequences. However this last
choice is essentially irrelevant : almost any dense subspace of l2 would give the same result
(see below). We take an arbitrary vector f E ~ 2 B s, with all components non-zero :

and, for each n = 1, 2, ..., define a new vector /~:

We have immediately :

and, for k ~ l:

With help of those vectors, we define two operators Ao, Bo on s:

The following properties are immediate :

ii) for all one has :

iii) Ao and Bo leave s invariant and are essentially self-adjoint on s. Defining A = Ao,
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B = Bo, we obtain two self-adjoint operators, both belonging to 0152(s). We observe that
for all m, n E N, f E D(A"’) n D(Bn) and = B"f = O.

J 
’

Indeed, consider truncated sequences 1(1) = f n e ( ) n ,
n=1 1

Then for J = 2L + 1, A’n f ~2L+ u = p~ N. Hence, { f~~2L+ 1&#x3E;, L = 0, 1 2 } is aCauchy sequence for the graph norm of Am and f(2L+1) ~ f, hence f E and 
Similarly for Bn, with the 

Finally, we consider the rank one operator C = ( e(1), . ~ f Its adjoint C* has also
rank one, and so both belong to 0152(s). Furthermore, C is a right multiplier of both Am and Bn
(in fact, AmCy = B"Cy = 0, E s). We claim that C ~ RS(A2m + B2m). Clearly it is enough
to show that f ~ + B2m), E N.
For that purpose we define, following [17], two auxiliary operators:

where  = ~(-l)"+i~~ Then a straightforward estimate shows that:
where K = max () fi ~ 2, ~ ~ f ~ ~ 2) IIA is the graph norm of A. More generally (using
the self-adjointness of A), we get:

In the same way:

The operators R, S do not belong to 0152:(s). In fact they are not even closable. Indeed
/~D(A*) = D(A) since

and also  ~ D(B*) = D(B). Therefore h E D(R*) or D(S*) iff  h, e(1)&#x3E; =0, i. e.

a subspace of codimension one, certainly not dense On the other hand, Rand S
coincide on s, yet R #- S. In particular :

Assume now that f E + B2m). This means, there is a sequence { } E s such that
/!~ -+ f and (A 2m + (A2m + But this implies that { /!,} is a Cauchy
sequence in the graph norms of Am and of Bm, and therefore f E n D(B’") and

Amf = 0, Bmf = 0. Using now (A . 8-9) with y = z = ~- /- we set:

(since = but this contradicts’ the relations (A .10). The conclusion is that
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f ~ + B2m) and therefore C is not a right multiplier for + B2m, although it

is one for A2m and separately. Thus ~S(s) is not distributive !
Now a careful reading of the proof shows that the specific properties of s have not been

used, except in the fact that s c n for all In fact the method may
be adapted to almost any domain D ~ {2 containing the finite sequences. Given such a D,
we choose a vector f E ~ 2 B ~ and construct operators Ao, Bo as above, Eqs. (A . 4 a-b).
A rough estimate shows that :

where 1 = min (/i, f2), n = min (fn-1, fn, fn+1) for n  2. Thus D ~ D(A20) ~ D(B20) if

one has

Conversely, given f ~ l2, the argument above works for any domain D which verifies

the condition (A 12). Notice that f itself cannot satisfy it, so that f ~ ~J. For such a domain ~,
the whole discussion may be repeated verbatim, with the conclusion that ~S(~) violates

distributivity.
For a general Hilbert space Jf, with dense domain ~, one may perform the same analysis

by choosing an orthonormal basis { e~"~ ~ contained in ~. Again, given f E ~f B ~, the argu-
ment works if Ç/Ø satisfies the condition (A. 12), where yn = e(n), y X etc., and then distri-

butivity again breaks down for ~S(~). Clearly this is the generic situation.
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