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ABSTRACT. - We consider the motion of a free quantum particle in a
half space R n - 1 x R + . The dependence of surface states on the boundary
conditions is investigated and the results are compared with those obtained
by a Schrodinger operator with attractive short-range potential in the
neighbourhood of the boundary. It is also shown that for boundary condi-
tions sufficiently singular a collapse on the boundary occurs.

RESUME. - On considère Ie mouvement d’une particule libre quantique
dans un demi espace x )R+. On etudie la dependance des etats
de surface par rapport aux conditions aux limites et on compare les resul-
tats avec ceux qu’on obtient avec un operateur de Schrodinger comportant
un potentiel attractif a courte duree au voisinage de la frontiere. On montre
aussi que pour des conditions aux limites suffisamment singulieres, il se

produit un effondrement sur la frontiere.

1. INTRODUCTION

It is well known that the motion of a free Schrodinger particle on a
half line R+ = [0, oo) is described by a one parameter family of Hamilto-
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374 H. ENGLISCH, M. SCHRÖDER AND P. SEBA

(The family H~ represents all possible self adjoint extensions of a half
line « Hamiltonian » Ho with the boundary point removed

The interaction of the particle with the point 0 is modelled here by the
boundary condition (b. c.)

Since H~ is the norm resolvent limit of Schrodinger operators with short-
range potentials [2] ] [3 ].

with

interaction with the boundary. Analogously (1) with (y &#x3E; 0 describes a

repulsive interaction while the free endpoint is modelled by (7 = 0 (Neu-
mann b. c.).

In the multidimensional case the situation becomes more complicated.
Considering the motion of a free particle on a n-dimensional half space

x R + we have to construct all possible self-adjoint extensions of
the half space Laplacian Ho with the boundary removed

(These extensions represent the admissible quantum Hamiltonians of

the system.)
But now the deficiency indices of Ho are not finite and this makes the

situation very complicated.
The aim of our paper is to study self adjoint extensions of Ho defined

by local b. c.

for n  2. (The corresponding operator is denoted as H(1.) In contrary
to the one dimensional case the local b. c. do not represent all possible
ones (there are also nonlocal b. c., cf. [4 D.
The homogeneous b. c. with o- = const. were already considered in

connection with the Bose condensation [J]-[7]. It was remarked in [3]
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375THE FREE LAPLACIAN WITH ATTRACTIVE BOUNDARY CONDITIONS

that it is possible to describe such an operator as a norm resolvent limit of

The constant 6 is then determined by

Therefore one should expect that also for the more general case (2) holds

where

But up to now we do not know any proof of (3) in the general case.
Nevertheless a comparison of properties of H(1 with those of

shows many similarities. Thus it seems that the influence of the boundary
can be modelled by an appropriate boundary condition of the type (3)
as well as by an additive short-range potential.

In the next section we study the spectral properties of Ha by an ansatz
leading to a Klein-Gordon pseudodifferential operator. In the section 3 (7
is taken to be a function or a periodic function respectively. In the
first case we find that at most a finite number of negative eigenvalues of Ha
appear. For 6 periodic the spectrum of H~ is absolutely continuous only.
In section 4 we discuss the properties of H~ with 6 singular. We show that
for 6 negative and singular enough a collapse on the boundary occurs.
In a forthcoming paper [8] random b. c. are considered.

2. TRANSFORMATION
TO A KLEIN-GORDON HAMILTONIAN

The interval [0, oo) belongs to the spectrum of H~ for any cr, since one
can for any s &#x3E; 0 and E  0 construct functions 03C8 ~ C~0(Rn-1 x R + )
such that

This is why we are interested only in the negative part of Introducing
for E  0 an operator

defined on the Hilbert space L2(R"-1) we get the following proposition [9 ].

Vol. 46, n° 4-1987.
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PROPOSITION 1. - Let 7 be a Ko,o bounded function with the relative
bound less then 1. Then for E  0 holds

Thus using the Klein-Gordon operator with a rest mass corresponding
to the binding energy - E we can simply investigate the negative part

The min-max-principle ([7~], §XIII.l) yields that the n-th eigenvalue
is less then the n-th eigenvalue ofHu=o + V2 ifV1(x)  

for any x. The approximation argument (3) let us expect the same for H6.

PROPOSITION 2. - If ~i(jc) ~ (72M for all then

where Em(H6) denotes the m-th eigenvalue of H~.

CONCLUSION. - For the ground state of H~ holds

Remark. 2014 If H03C3 has only k  m eigenvalues bellow its essential spectrum
then denotes inf for all m &#x3E; k.

Proof 6~ the Conclusion. = min (0, inf o-(~)) ~ ~(x). Then
= inf 6i ~

Proof 6~ the Proposition 2. The min-max-principle yields that 
is increasing in 6 and decreasing in E. Thus the solution E = E(r) of

is decreasing in cr.

For H~,a, /L -~ oo the estimate (4) becomes exact in the sense that

(For the proof take trial functions for as in [11 ].)
Conversely for bounded V

i. e. the asymptotical behaviour of + ÂV) is only linear. This
difference between and + ÀV is observable already in the expli-
citely solvable one dimensional case. But it is not surprizing since approxi-
mating by + (cf. (3)) we get

in the s -~ 0 limit for negative V.
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3. SHORT AND LONG RANGE BOUNDARY CONDITIONS

Let us first investigate the spectrum of H(1 when 03C3 is a short-range func-
tion. Since + V has only discrete spectrum bellow 0 for short-range
potentials one would expect the same also for H(1 with y short-range.
Proposition 1 of the present paper and theorem 4 . 2 of ref. [72] ] imply
immediately.

PROPOSITION 3. - Let + with 2  p  oo and

p &#x3E; n - 1 (i. e. for any s &#x3E; 0 there is a decomposition

with and oO s). Then

and the negative part of consists of isolated eigenvalues of finite
multiplicity.
Remarks. 1) For 03C3 E a similar proposition was already proved

in [7~] ] [14 ].
2) Proposition 3 is an analogue of the fact that

In the cae n = 2 it is possible to get some more detailed information
on the eigenvalues of H~.

PROPOSITIONS2014Let and where 1  p  2
and p’ &#x3E; 1. Then for the m-th eigenvalue of H~ holds

where and Ko denotes the modified Hankel function of
order zero. (03C3-i03C3+ are the negative and positive parts of 03C3 respectively.)

Proof. Let No(Ka,E) denotes the number of nonpositive eigenvalues
of K6,E. Using the Birman-Schwinger argument ([70], theorem XIII. 10)
and replacing the Green’s function of - 0 by the Green’s function of KO,E
we get A

The fact that for any /? ~ 1 [7~] ] and the Young inequality
imply (5).

01. 46, nO 4-1987.
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Remarks. - 1) In the case of higher dimensions this technique is not
applicable since the kernel of Ko,E becomes too singular. Consequently
the integrals corresponding to (6) are divergent.

2) The condition 03C3 E for p &#x3E; 1 implies that 6 is infinitely small
with respect to Ko,o (cf. [9 ]) what enables us apply proposition 1.

It is rather difficult to investigate the spectrum of K6,E in the general
case. This difficulty is connected with the nonlocality of this operator.
Therefore it is not possible to use standard arguments based on diffe-
rential equations. Nevertheless one can prove that the spectrum of K~p
is absolutely continuous for (7 periodic (and hence for HJ using the tech-
nique based on direct integral decomposition outlined in ([70],
§ XIII 10).

Let ...,~-1) be a basis in We denote

Moreover we define for x E and kEN

av I av I ’ dv 
-- 

JV I ./~. I .

Now we can state

PROPOSITION 5. - Let 6 be a periodic function

Suppose that cr is 1 times differentiable with

and that

Then the spectrum of H(1 is absolutely continuous.

Proof - We note at the beginning that under these assumptions 6
is infinitely small with respect to Ko,o. Thus the proposition 1 is appli-
cable. We introduce

Since the Hausdorff-Young inequality yields

Annales de Henri Poincaré - Physique théorique



379THE FREE LAPLACIAN WITH ATTRACTIVE BOUNDARY CONDITIONS

where gm, mE Zn -1 are the Fourier coefficients of g. Let us now define

denotes the Fourier coefficients of 6). Since

and for all r &#x3E; (n - 1)il the Holder inequality yields

The assumption (7) implies that the right hand side of (8) is less then (2~ 20144)/
(2n - 5). Thus we can choose s  (2n - 4)/(2n - 5). Analogously we get
6 E ls(Z) with 5 ~ 2 for n = 2.
From now on we will follow the proof of the theorem XIII 100, ref. [10 ].

We denote

where a, and ( a J) denotes the basis reciprocal to (a~)

(For the analytic continuation into the complex plane the branch with
Re &#x3E; 0 is choosen.) Since

for all ç E C, Re ~ 0 we get

This allows us to follow completely the proof of the theorem XIII.100
of ref. [10]. We get

where F denotes the Fourier transform and is an operator acting
o

It is simple to show that the eigenvalues E) of the operator K6,E(k)

Vol. 46, n° 4-1987.
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are nonconstant analytic functions of k for k E [0,203C0]n-1. At the same
time are E) decreasing functions of E for k fixed.

Let us now decompose the operator H~. Here we get

where is an operator acting on ~(Z" ~) (x) L~(R+)

defined by boundary condition

Using the argument of the proposition 1 we get

Hence the eigenvalues E(k) of are nonconstant functions of k and
theorem XIII. 86, ref. [7~] ] implies the absolute continuity of 

4 AN EXAMPLE

Let us now investigate what happens when 6 is not Ko,o bounded.
In order to make the life easy we start with n = 2 and we choose

The function 6~ is singular at 0 and it is not Ko,o bounded. In order to
define the operator H6~ we remove the singularity by defining an operator

The operator H~ is symmetric but it is not self adjoint and the original
Hamiltonian H~~ represents one of its self adjoint extensions.

Introducing the polar coordinates

the Hilbert space decomposes as

The operator H6°~ decomposes with respect to (9) as

Annales de Poincaré - Physique theorique
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where B denotes the modified « angular momentum » operator

which is defined on L2(o, ~) by boundary conditions

Let now xn and ~n denote the eigenvalues and eigenvectors of B

Because {~n}~n= 1 form an orthogonal basis in L2(0, 03C0) we get from (9)

where

Estimating the eigenvalues of B we get for c &#x3E; 0

For c  0 also negative eigenvalues occur and we obtain

resp.

Inserting these values into (12) we find ( [1 ], appendix to §X.l) that for
c &#x3E; 0 the operators are positive and essentially self adjoint for n &#x3E; 1.
Moreover has deficiency indices (1,1) and all its self adjoint extensions
are semibounded. Consequently H~ is an operator with deficiency indices
( 1, 1 ) and all its self adjoint extensions are bounded from below.
For c  0 the situation changes. We have now Xl  0 and this implies

that the operator is not semibounded. Using the formula (11) we find
that H~ is not bounded from below. Since H6°~ is an operator with finite
deficiency indices we get finally that all its self adjoint extensions are not

Vol. 46, n° 4-1987.
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bounded from below. This mathematical fact has a simple physical inter-
pretation. It means that for c  0 a collapse of the system on the boundary
occurs [16 ].
The proposition 1 cannot be applied in this case since is not Ko,o

bounded. But nevertheless the corresponding Klein-Gordon operator 
is also not bounded from below for c  0. (Cf. [17 ], theorems 2 .1 and 2 . 5).
The situation is similar also for n &#x3E; 2. Introducing ~~ = c’1 x ~ I we get

that the operator is not bounded from below for all c  c~ where c"
is some negative constant. (For instance for n = 4 we get C4 = - 2/rc.)
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