High order corrections to the time-independent Born-Oppenheimer approximation. - I. Smooth potentials
Annales de l'I.H.P. Physique théorique, Volume 47 (1987) no. 1, p. 1-16
@article{AIHPA_1987__47_1_1_0,
     author = {Hagedorn, George A.},
     title = {High order corrections to the time-independent Born-Oppenheimer approximation. - I. Smooth potentials},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {47},
     number = {1},
     year = {1987},
     pages = {1-16},
     zbl = {0621.41012},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1987__47_1_1_0}
}
Hagedorn, George A. High order corrections to the time-independent Born-Oppenheimer approximation. - I. Smooth potentials. Annales de l'I.H.P. Physique théorique, Volume 47 (1987) no. 1, pp. 1-16. http://www.numdam.org/item/AIHPA_1987__47_1_1_0/

[1] M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln. Ann. Phys. (Leipzig), t. 84, 1927, p. 457-484. | JFM 53.0845.04

[2] J.M. Combes, On the Born-Oppenheimer Approximation. In: International Symposium on Mathematical Problems in Theoretical Physics (ed. H. Araki), p. 467-471. Berlin, Heidelberg, New York, Springer, 1975. | MR 673617

[3] J.-M. Combes, The Born-Oppenheimer Approximation. In: The Schrödinger Equation (eds. W. Thirring, P. Urban), p. 139-159. Wien, New York, Springer, 1977. | MR 673617 | Zbl 0372.47026

[4] J.-M. Combes, P. Duclos and R. Seiler, The Born-Oppenheimer Approximation. In: Rigorous Atomic and Molecular Physics (eds. G. Velo, A. Wightman), p. 185-212. New York, Plenum, 1981.

[5] G.A. Hagedorn, A Time Dependent Born-Oppenheimer Approximation. Commun. Math. Phys., t. 77, 1980, p. 1-19. | MR 588684 | Zbl 0448.70013

[6] G.A. Hagedorn, Higher Order Corrections to the Time-Dependent Born-Oppenheimer Approximation I: Smooth Potentials. Ann. Math., t. 124, 1986, p. 571-590. Erratum to appear 1987. | MR 866709 | Zbl 0619.35094

[7] G.A. Hagedorn, Multiple Scales and the Time-Independent Born-Oppenheimer Approximation (submitted to the proceedings of The International Conference on Differential Equations and Mathematical Physics, Birmingham, Alabama. March, 1986).

[8] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. IV, Analysis of Operators, New York, London, Academic Press, 1978. | Zbl 0401.47001

[9] R. Seiler, Does the Born-Oppenheimer Approximation Work ? Helv. Phys. Acta, t. 46, 1973, p. 230-234.

[10] B. Simon, Semiclassical Analysis of Low Lying Eigenvalues. I. Non-degenerate Minima: Asymptotic Expansions. Ann. Inst. Henri Poincaré Sect A, t. 38, 1983, p. 295-308. | Numdam | MR 708966 | Zbl 0526.35027