@article{AIHPA_1987__47_1_85_0, author = {Celletti, Alessandra and Falcolini, Corrado and Porzio, Anna}, title = {Rigorous numerical stability estimates for the existence of {KAM} tori in a forced pendulum}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {85--111}, publisher = {Gauthier-Villars}, volume = {47}, number = {1}, year = {1987}, mrnumber = {912758}, zbl = {0636.70017}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1987__47_1_85_0/} }
TY - JOUR AU - Celletti, Alessandra AU - Falcolini, Corrado AU - Porzio, Anna TI - Rigorous numerical stability estimates for the existence of KAM tori in a forced pendulum JO - Annales de l'I.H.P. Physique théorique PY - 1987 SP - 85 EP - 111 VL - 47 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1987__47_1_85_0/ LA - en ID - AIHPA_1987__47_1_85_0 ER -
%0 Journal Article %A Celletti, Alessandra %A Falcolini, Corrado %A Porzio, Anna %T Rigorous numerical stability estimates for the existence of KAM tori in a forced pendulum %J Annales de l'I.H.P. Physique théorique %D 1987 %P 85-111 %V 47 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPA_1987__47_1_85_0/ %G en %F AIHPA_1987__47_1_85_0
Celletti, Alessandra; Falcolini, Corrado; Porzio, Anna. Rigorous numerical stability estimates for the existence of KAM tori in a forced pendulum. Annales de l'I.H.P. Physique théorique, Tome 47 (1987) no. 1, pp. 85-111. http://archive.numdam.org/item/AIHPA_1987__47_1_85_0/
[1] The Elements of Mechanics, Springer, 1983. | MR | Zbl
,[2] Perturbation theory for classical hamiltonian systems, « Scaling and Self Similarity », Progress in Physics, t. 7, 1984. | MR
,[3] Quasi integrable mechanical systems, Les Houches Summer School 1984, procendings, ed. K. Osterwalder, R. Stora, North Holland, 1986 (in print). | MR | Zbl
,[4] Thesis. Stime di stabilità in presenza di piccoll denominatori nel caso di sistemi hamiltoniani unidimensionali non autonomi, Roma, 1980.
,[5] Stability bounds for the existence of KAM tori in a forced pendulum, in print: Boll. Unione Matematica Italiana, 1986. | MR | Zbl
,[6] Rigorous KAM stability statements for non autonomous one-dimensional hamiltonian systems, 1986. | Zbl
, , ,[7] Renormalization method for computing the threshold of the large scale stochasticity in two degrees of freedom hamiltonian systems. Journ. Stat. Phys., t. 26, 1981, p. 2. | MR
, ,[8] The theory of numbers, Oxford, 1979. | Zbl
, ,[9] The applicability of the third integral of motion: some numerical experiments. Astr. Journ., t. 69, 1964, p. 1. | MR
, ,[10] Exploration numérique du problème restreint. Ann. d'Astroph., t. 28, 1965, p. 3. | Zbl
,[11] Nuovo Cimento, t. 50 B, 1979, p. 211. | MR
, , , , ,[12] Phys. Rep., t. 52, 1979.
,[13] Journ. of Math. Phys., t. 20, 1979.
,[14] Lettere al Nuovo Cimento, t. 39, 1984, p. 417. | MR
, , ,[15] Improved KAM estimates for the Siegel radius, 1985. | MR | Zbl
, ,[16] Rigorous Estimates for a Computer-Assisted KAM theory, to appear in J. of Math. Phys. | MR | Zbl
, ,[17] Vax-11 Fortran IV, Plus, Language reference manual, Digital Equipment Corporation, Maynard, Massachusetts, 1978.
[18] Classical perturbation theory for systems of weakly coupled rotators, 1984. | MR
, , ,[19] Vax-11 Fortran IV, Plus, User's Guide, Digital Equipment Corporation, Maynard, Massachusetts, 1978.
[20] Vax-11 Fortran IV, Plus, Run-time library reference manual, Digital Equipment Corporation, Maynard, Massachusetts, 1978.
[21]
, private communication.