Spectral resonances for the Laplace-Beltrami operator
Annales de l'I.H.P. Physique théorique, Tome 48 (1988) no. 2, pp. 105-145.
@article{AIHPA_1988__48_2_105_0,
     author = {De Bi\`evre, Stephen and Hislop, Peter D.},
     title = {Spectral resonances for the {Laplace-Beltrami} operator},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {105--145},
     publisher = {Gauthier-Villars},
     volume = {48},
     number = {2},
     year = {1988},
     mrnumber = {952658},
     zbl = {0645.58041},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1988__48_2_105_0/}
}
TY  - JOUR
AU  - De Bièvre, Stephen
AU  - Hislop, Peter D.
TI  - Spectral resonances for the Laplace-Beltrami operator
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1988
SP  - 105
EP  - 145
VL  - 48
IS  - 2
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1988__48_2_105_0/
LA  - en
ID  - AIHPA_1988__48_2_105_0
ER  - 
%0 Journal Article
%A De Bièvre, Stephen
%A Hislop, Peter D.
%T Spectral resonances for the Laplace-Beltrami operator
%J Annales de l'I.H.P. Physique théorique
%D 1988
%P 105-145
%V 48
%N 2
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1988__48_2_105_0/
%G en
%F AIHPA_1988__48_2_105_0
De Bièvre, Stephen; Hislop, Peter D. Spectral resonances for the Laplace-Beltrami operator. Annales de l'I.H.P. Physique théorique, Tome 48 (1988) no. 2, pp. 105-145. http://archive.numdam.org/item/AIHPA_1988__48_2_105_0/

[1] P.D. Hislop, I.M. Sigal, Shape Resonances in Quantum Mechanics. University of California, Irvine preprint 1986, to be published in Memoirs of the American Mathematical Society. | MR

[2] J.-M. Combes, P. Duclos, M. Klein, R. Seiler, The Shape Resonance. Commun. Math. Phys., t. 110, 1987, p. 215-216. | MR | Zbl

[3] B. Helffer, Sjöstrand, Resonances en Limite Semi-Classique. Mémoire de la Société Mathématique de France, no. 24/25, Supplément au Bulletin de la S. M. F., t. 114, 1986. | Numdam | Zbl

[4] S. Graffi, K. Yajima, Exterior scaling and the AC-Stark effect in a Coulomb field. Commun. Math. Phys., t. 89, 1983, p. 277-301. | MR | Zbl

[5] I. Herbst, Dilation Analyticity in constant electric field, I. The two-body problem. Commun. Math. Phys., t. 64, 1979, p. 279-298. | MR | Zbl

[6] J.E. Avron, I. Herbst, B. Simon, Schrödinger Operators with magnetic fields III. Atoms in homogeneous magnetic fields. Commun. Math. Phys., t. 79, 1981, p. 529-572. | MR | Zbl

[7] J.F. Escobar, On the spectrum of the Laplacian on complete Riemannian manifolds. Comm. in Partial Differential Equations, t. 11 (1), 1986, p. 63-85. | MR | Zbl

[8] R.G. Froese, P.D. Hislop, Analysis of Point Spectrum of Second Order Elliptic Operators on Non-compact Manifolds. CPT Marseille preprint 1988.

[9] Ph Briet, J.M. Combes, P. Duclos, On the location of Resonances for Schrödinger Operators in the semiclassical limit. III. Shape Resonances. CPT Marseille preprint, 1987 ; Sigal, I. M.: Exponential Bounds on Resonance States and Width of Resonances. University of Toronto preprint, 1987.

[10] R. Abraham, J.E. Marsden, Foundations of Mechanics. London: Benjamin Cummings Publishing Co., 1978. | MR | Zbl

[11] P. Chernoff, Essential Self-Adjointness of powers of generators of hyperbolic equations. J. Functional Analysis, t. 12, 1972, p. 401-414. | MR | Zbl

[12] M. Spivak, A Comprehensive Introduction to Differential Geometry. I. Delaware: Publish or Perish, Inc. 1970.

[13] M. Reed, B. Simon, Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-Adjointness. New York: Academic Press 1975. | MR | Zbl

[14] M. Reed, B. Simon, Methods of Modern Mathematical Physics, IV. Analysis of Operators. New York: Academic Press, 1978. | MR | Zbl

[15] S.T. Yau, Some function theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J., t. 25, 1976, p. 659-670. | MR | Zbl

[16] B. Simon, Semiclassical Analysis of Low Lying Eigenvalues I. Nondegenerate Minima: Asymptotic Expansions. Ann. Inst. Henri Poincaré, t. 13, 1983, p. 296-307. | Numdam | MR | Zbl

[17] Ph Briet, J.M. Combes, P. Duclos, On the Location of Resonances for Schrödinger Operators in the semiclassical limit. I : Resonance free domains. J. Math. Analy. and Appl., t. 126, 1987, p. 90-99. | MR | Zbl

[18] S. Agmon, Lectures on exponential decay of solutions of second-order elliptic equations. Princeton: Princeton University Press, 1982. | MR | Zbl

[19] B. Simon, Semiclassical Analysis of Low Lying Eigenvalues II. Tunneling. Ann. Math., t. 120, 1984, p. 89-118. | MR | Zbl

[20] L.P. Horwitz, I.M. Sigal, On a mathematical model for non-stationary physical systems. Helv. Phys. Acta, t. 51, 1978, p. 685-715. | MR

[21] P. Deift, W. Hunziker, B. Simon, E. Vock, Pointwise Bounds on Eigenfunctions and Wave Packets in N-Body Quantum Systems IV. Commun. Math. Phys., t. 64, 1978, p. 1-34. | MR | Zbl

[22] B.S. Dewitt, Dynamical Theory in Curved Spaces I. A Review of the Classical and Quantum Action Principles. Rev. Mod. Phys., t. 29, 1957, p. 377-397. | MR | Zbl

[23] K.S. Cheng, Quantization of a General Dynamical System by Feynman's Path Integration Formulation. J. Math. Phys., t. 13, 1972, p. 1723-1726.