@article{AIHPA_1988__48_2_105_0, author = {De Bi\`evre, Stephen and Hislop, Peter D.}, title = {Spectral resonances for the {Laplace-Beltrami} operator}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {105--145}, publisher = {Gauthier-Villars}, volume = {48}, number = {2}, year = {1988}, mrnumber = {952658}, zbl = {0645.58041}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1988__48_2_105_0/} }
TY - JOUR AU - De Bièvre, Stephen AU - Hislop, Peter D. TI - Spectral resonances for the Laplace-Beltrami operator JO - Annales de l'I.H.P. Physique théorique PY - 1988 SP - 105 EP - 145 VL - 48 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1988__48_2_105_0/ LA - en ID - AIHPA_1988__48_2_105_0 ER -
De Bièvre, Stephen; Hislop, Peter D. Spectral resonances for the Laplace-Beltrami operator. Annales de l'I.H.P. Physique théorique, Tome 48 (1988) no. 2, pp. 105-145. http://archive.numdam.org/item/AIHPA_1988__48_2_105_0/
[1] Shape Resonances in Quantum Mechanics. University of California, Irvine preprint 1986, to be published in Memoirs of the American Mathematical Society. | MR
, ,[2] The Shape Resonance. Commun. Math. Phys., t. 110, 1987, p. 215-216. | MR | Zbl
, , , ,[3] Resonances en Limite Semi-Classique. Mémoire de la Société Mathématique de France, no. 24/25, Supplément au Bulletin de la S. M. F., t. 114, 1986. | Numdam | Zbl
, ,[4] Exterior scaling and the AC-Stark effect in a Coulomb field. Commun. Math. Phys., t. 89, 1983, p. 277-301. | MR | Zbl
, ,[5] Dilation Analyticity in constant electric field, I. The two-body problem. Commun. Math. Phys., t. 64, 1979, p. 279-298. | MR | Zbl
,[6] Schrödinger Operators with magnetic fields III. Atoms in homogeneous magnetic fields. Commun. Math. Phys., t. 79, 1981, p. 529-572. | MR | Zbl
, , ,[7] On the spectrum of the Laplacian on complete Riemannian manifolds. Comm. in Partial Differential Equations, t. 11 (1), 1986, p. 63-85. | MR | Zbl
,[8] Analysis of Point Spectrum of Second Order Elliptic Operators on Non-compact Manifolds. CPT Marseille preprint 1988.
, ,[9] On the location of Resonances for Schrödinger Operators in the semiclassical limit. III. Shape Resonances. CPT Marseille preprint, 1987 ; Sigal, I. M.: Exponential Bounds on Resonance States and Width of Resonances. University of Toronto preprint, 1987.
, , ,[10] Foundations of Mechanics. London: Benjamin Cummings Publishing Co., 1978. | MR | Zbl
, ,[11] Essential Self-Adjointness of powers of generators of hyperbolic equations. J. Functional Analysis, t. 12, 1972, p. 401-414. | MR | Zbl
,[12] A Comprehensive Introduction to Differential Geometry. I. Delaware: Publish or Perish, Inc. 1970.
,[13] Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-Adjointness. New York: Academic Press 1975. | MR | Zbl
, ,[14] Methods of Modern Mathematical Physics, IV. Analysis of Operators. New York: Academic Press, 1978. | MR | Zbl
, ,[15] Some function theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J., t. 25, 1976, p. 659-670. | MR | Zbl
,[16] Semiclassical Analysis of Low Lying Eigenvalues I. Nondegenerate Minima: Asymptotic Expansions. Ann. Inst. Henri Poincaré, t. 13, 1983, p. 296-307. | Numdam | MR | Zbl
,[17] On the Location of Resonances for Schrödinger Operators in the semiclassical limit. I : Resonance free domains. J. Math. Analy. and Appl., t. 126, 1987, p. 90-99. | MR | Zbl
, , ,[18] Lectures on exponential decay of solutions of second-order elliptic equations. Princeton: Princeton University Press, 1982. | MR | Zbl
,[19] Semiclassical Analysis of Low Lying Eigenvalues II. Tunneling. Ann. Math., t. 120, 1984, p. 89-118. | MR | Zbl
,[20] On a mathematical model for non-stationary physical systems. Helv. Phys. Acta, t. 51, 1978, p. 685-715. | MR
, ,[21] Pointwise Bounds on Eigenfunctions and Wave Packets in N-Body Quantum Systems IV. Commun. Math. Phys., t. 64, 1978, p. 1-34. | MR | Zbl
, , , ,[22] Dynamical Theory in Curved Spaces I. A Review of the Classical and Quantum Action Principles. Rev. Mod. Phys., t. 29, 1957, p. 377-397. | MR | Zbl
,[23] Quantization of a General Dynamical System by Feynman's Path Integration Formulation. J. Math. Phys., t. 13, 1972, p. 1723-1726.
,