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ABSTRACT. - The field equations of gravity coupled to electromagnetism
and to the U ( 1 ) Jordan-Thiry scalar field are reviewed and given both in
the usual 4-dimensional space of General Relativity, and in the 5-dimen-
sional formalism of Kaluza and Klein. The relation between the five and
the 4-dimensional geodesics is studied as well as the general description
of matter sources. In particular, we show that any attempt to describe the
motion of usual test particles (or matter fields) in the 5-dimensional

space leads to experimental inconsistencies. On the contrary, if matter is
described as usual in the 4-dimensional space, the theory leads to the same
Parametrized-Post-Newtonian parameters as General Relativity for the
Schwarzschild solution, although the scalar field is coupled to gravity.

RESUME. - Les equations de la gravitation couplee a 1’electromagne-
tisme et au champ scalaire U ( 1 ) de Jordan-Thiry sont réexposées et écrites
dans l’espace de dimension 4 de la Relativite Générale, ainsi que dans le
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114 R. COQUEREAUX AND G. ESPOSITO-FARESE

formalisme pentadimensionnel de Kaluza et Klein. Nous etudions la rela-
tion entre les geodesiques 4- et 5-dimensionnelles, et la description générale
des sources matérielles. En particulier, nous montrons que decrire le
mouvement des particules usuelles (ou les champs materiels) dans l’espace
de dimension 5, conduit a des incompatibilites experimentales. En

revanche, si la maniere est decrite comme d’habitude dans l’espace de
dimension 4, la theorie conduit aux memes parametres Post-Newtoniens
que la Relativite Generale pour la solution de Schwarzschild, malgre la
presence du champ scalaire couple a la gravitation.

INTRODUCTION

As is well known, gravity and electromagnetism can be unified in the
5-dimensional formalism of Kaluza [1] and Klein [2]. However, unless a
rather unphysical hypothesis is made, the theory also incorporates a scalar
field which, roughly speaking, describes how the size of the 5th dimension
(the radius of a small circle) changes from place to place. A 4-dimensional
description of the theory incorporates a set of 15 equations ( 10 modified
Einstein equations, 4 modified Maxwell equations and a 15th equation
for the scalar field). Jordan [3] and Thiry [4] were the first to consider the
scalar field (that we shall call cr) not as a nuisance, but as an interesting
prediction of the theory, which should be tested experimentally. In the
present decade, the old idea of Kaluza has been taken up and many
attempts to find a unified theory have been made along these lines. The
low-energy behaviour of all these Kaluza-Klein-like theories (and even of
superstring) should be somehow tightly related to a theory of general
relativity with scalar field since, after all, gravity and electro-
magnetic forces govern our 4-dimensional world. Despite an enormous
amount of literature on the subject of Kaluza-Klein-like theories in recent
years (see for instance [5] to [9]), it is not easy to find an account of the

original theory of Thiry (see however [3], [4], [10], [ 11 ], [12]). This partly
motivates the present paper. ,

In order to be experimentally tested, a theory of gravity should incorpor-
ate both a description of geometry (in the present case gravity, electro-

, magnetism and a scalar field), and a description of matter (equations of
motion for test particles, description of matter sources...). Thiry [4] made
a specific choice for the expression of the 5-dimensional energy-momentum
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115THEORY OF KALUZA-KLEIN-JORDAN-THIRY

tensor and imposed that test particles should follow geodesics of this 5-
dimensional space-time. Some experimental consequences of this choice
have been studied in the past, and most physicists remember that it leads
to difficulties. The literature often quotes the calculation [13] which shows
that this theory is incompatible with the measurement of Mercury peri-
helion shift. However, this calculation is incorrect, although we agree with
the conclusion. Moreover, this is not the worst experimental contradiction,
and we point out two others, related with the fact that test particles are
supposed to follow the geodesics of the 5-dimensional manifold, in this
original theory. A space-like geodesic in the 5-dimensional space-time may
appear space-like, time-like or even null for the 4-dimensional observer
(this depends upon the local value of the scalar field); it can also describe
charged particles of arbitrary mass (including imaginary). On the contrary,
time-like (or null) geodesics in the 5-dimensional space-time always appear
as time-like (or null) in our 4-dimensional space-time but they cannot
describe charged particles of mass smaller than 10~° GeV. For this reason
the papers dealing with the experimental consequences of this theory
([10], [13] to [17]) made the hypothesis that test particles are tachyons in
the 5-dimensional manifold (although this was not always recognized
explicitly) and that the scalar field o is small enough - but cannot take
arbitrary negative values - in order for this test particle to appear as a
usual time-like particle like the electron. Nowadays, we would not like to
use tachyonic particles in a Unified Quantum Field Theory anyway, but
we show that this choice leads to very serious experimental inconsistencies
already at the classical level. This is another motivation for our study.
The experimental predictions of the theory depend of course upon our

description of matter fields, and the choice made by Thiry (and considered
in the literature) is not the only one. For example, a fluid which appears
to be perfect in the 4-dimensional space can be described in several ways
in the 5-dimensional space. It is also possible to describe matter as usual,
in the 4-dimensional space, like in Einstein-Maxwell theory. With this
choice, we find that the static and spherically symmetrical solution of
the field equations in the vacuum - i. e. the generalized chwarzschild
solution - is almost not modified by the presence of the scalar field coupled
to gravity and electromagnetism: the post-Newtonian parameters are the
same as in General Relativity. This discussion of the possible choices to
describe matter fields, which imply different analysis of the experimental
consequences, is a third motivation for our study.
Our paper is organized as follows: In the first part we study gravity,

electromagnetism and the scalar field cr in empty space; we also give the
generalized Schwarzschild solution (assuming no electromagnetism), and
we see how this is modified when we add an electromagnetic field or a
cosmological constant. In the second part, we study matter: action of
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116 R. COQUEREAUX AND G. ESPOSITO-FARESE

geometry on matter - i. e. geodesics - and action of matter on geometry,
in particular the different possibilites for writing field equations in the
presence of matter. We then discuss several experimental difficulties of the
original Jordan-Thiry theory.

N.B.: The sign conventions and notations that we use are given in
Appendix B.

1. GRAVITATION AND ELECTROMAGNETISM

1.1. The 5-dimensional manifold

1 . 1 . 1. Kaluza’s idea

Special Relativity predicts that the electric and magnetic fields are

components of the same tensor F~. Trying to imitate this unification of
two fields, Kaluza’s idea [1] was to describe the gravitational field gJlv and
the electric potential A~ as components of the same tensor. Gravitation
and electromagnetism would then be given by a single theory. The most
natural way of implementing this idea is to construct a second-order

symmetrical tensor ymn, the components of which include gJlv and A~. Since
gJlv is symmetrical with 10 independent components and AJI is a 4-vector,
ymn must have at least 14 independent components. It can be interpreted
as a metric tensor in 5 dimensions and will have therefore 15 independent
components. The extra degree of freedom is interpreted as a scalar field
in Jordan-Thiry theory. This theory will be a natural generalization of
General Relativity, and the connection will be the Levi-Civita one (hence
compatible with the metric and torsionless).

1.1.2. U (1 )-invariance
Even if one tries to describe the laws of physics in an extra-dimensional

space, it remains to explain why our Universe appears to be only 4-
dimensional. Kaluza’s idea was to suppose a priori that in some coordi-
nates, the metric ymn does not depend on x5. (Klein [2] suggested that the
metric was a periodical function of x~.)
Today we express this idea as follows: the universe is locally homeo-

morphic to a "tube", product of a circle by the usual 4-dimensional
space-time - that we will call M -. Moreover, the 5-dimensional metric is
invariant with respect to the group U ( 1 ) acting on the "internal space"
S 1. In yet another language, the 5-dimensional universe is a U ( 1 ) principal
bundle endowed with a U ( 1 ) invariant metric.

In this paper, we do not use explicitly the fact that the internal space is
compact. However, if we suppose that it is a circle, we may set dx5 = f!Il de
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117THEORY OF KALUZA-KLEIN-JORDAN-THIRY

and use (for instance) the Dirac equation to show that the charge e is

quantized and related to the radius ~ of this circle by :

1.2. Dimensional reduction

1. 2. 1. Metric tensor

The 5-dimensional line element:

can be written:

We will often consider adapted frames, in which the 5th unitary vector is

given by the Pfaff form: (dx5 + [Underlined indexes~ B Yss /
are associated with the adapted frame.] Locally, the 4-dimensional space
orthogonal to this vector will be interpreted as the usual space-time. Let
us call:

and:

[We choose the signature of the metric to be ( - , +, +, +, + ), therefore
Y55&#x3E;0. A signature ( - , +, +, +, -) would lead to a negative energy
for the electromagnetic field]. The quantities g~ A~ and a are independent
of xs, and K is a constant which will be related to G. As we shall see, A~
behaves like the electromagnetic potential, and a behaves as a scalar field
in M.

The 5-dimensional line element can now be written in terms of 4-

dimensional quantities:

Vol. 52, n° 2-1990.



118 R. COQUEREAUX AND G. ESPOSITO-FARESE

1 .2.2. Einstein tensor

Ricci tensor in an adapted frame:
By writing that the torsion of the 5-dimensional manifold vanishes, one

can derive formulae giving the 5-Ricci tensor ~ in terms of the 4-tensor
R~", the 4-vector A~ and the 4-saclar a (see for instance [I 1], [ 12] or [18]):

where ~  is the 4-dimensional covariant differentiation. Hence, the 5-
curvature scalar reads:

Einstein tensor:
In an adapted frame, [Emn is easily deduced from and one can then

derive the corresponding formulae in a coordinate frame. The 5-Einstein
tensor is related to the 4-dimensional one Eu,, by:

1.3. 5-dimensional Einstein’s equations for empty space

1. 3 1. Natural generalization of pure gravity
Like in General Relativity, one can write the lagrangian density:

where y=det (Ymn) and G is a constant (the gravitational constant in the
5-dimensional space). It leads to the generalized Einstein’s equations:

Annales de I’Institut Henri Poincaré - Physique théorique
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Kaluza wrote these equations in [1], but he wanted to eliminate the

prediction of the unknown massless scalar o. Therefore, he supposed later
that o was a constant parameter of the theory. This assumption does not
lead to inconsistencies if only the equations of motion are considered
(Kaluza’s purpose was mainly to find a space where charged particles
move on geodesics; c/~ §2.1.1). But when the field equations (5) are
written, a must actually be taken as a field (cf. § 1. 4. 3.). Jordan [3] and
Thiry [4] were the first to consider this scalar not as a nuisance, but as an
interesting prediction modifying Einstein-Maxwell theory, which should
be tested experimentally.

1.3.2. A first attempt of physical interpretation

Using formula (3 d), the lagrangian (4) reads:

(where the third term involvind [] e03C3 can be removed since it is a total

divergence). This lagrangian describes gravity coupled to electromagnetism
and a scalar field, but the first term shows that the 4-dimensional gravita-
tional constant must be defined as: G = G e - a - up to a constant multipli-
cative factor - . Therefore, in this original version of Jordan-Thiry theory,
G appears to be variable if 0’ is not a constant. This can be cured by a
conformal transformation.

1. 3. 3. Conformal transformation

~ Field redefinitions allow us to rewrite the same theory in a different
way. Let us redefine the metric tensor by a conformal transformation
([10], [14], [19], [20]):

g~v * = e~ o~v
where T is a 4-scalar, depending on the four coordinates X2, x3, X4).
~ is always a tensor intrinsically defined on M, so it can also be

considered as the usual metric of General Relativity.
~ One can define new tensors corresponding to this conformal metric.
The equations: g~ = eT and: g* IJV = e - ~ yield:

then:

Vol. 52, n° 2-1990.
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and:

The electromagnetic tensor is still:

But:

~ Of course, in order to write the "old" tensors in terms of the "new"
ones, we need only to change the sign of T. For instance:

where the stars (*) mean that the conformal metric must be used to raise
and lower the indices (this * has of course no relation with Hodge
duality !). In particular:

and:

2022 The lagrangian (6) of the theory can now be written in terms of the
conformal metric:

(where the last term can be removed since it is a total divergence). Notice
that the electromagnetic term is a conformal invariant (i. e. the factor e3 "
is not modified by the redefinition of the metric). The 4-dimensional
gravitational constant reads now: and can be imposed to be
the constant G by setting r = a.

(Notice that this conformal transformation is nothing else than a conven-
ient change of variables, but it does not change anything to the physics.)

~ Conformal transformation for a:
A general study of extra-dimensional Kaluza-Klein theories has been

developed in [18]. For more than 4+ 1 dimensions, a conformal transform-
ation on g, is not enough to obtain a constant value for G. The metric
of the "internal" space must also be conformally transformed.
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In Jordan-Thiry theory, this additional rescaling is not necessary. It

corresponds to a redefinition of o: 03C3* = 3 2 03C3. We have kept the non-
transformed a in our formulae, because they would have been a little
more complicated with o*. But higher dimensional Kaluza-Klein theorists
must exercise care when using the present paper, in which only the

necessary conformal transformation has been made.

1. 3 . 4. Field equations for empty space

~ If the conformal metric g* = e~ gw,, is used, the lagrangian (8) of the
theory reads:

(In the 5-dimensional empty space, there are not matter and no electric

sources, but the electromagnetic field is not necessarily vanishing.) One
can choose the origin of 6 so that Einstein-Maxwell theory is recovered
for cy=0. In this case, one must set:

so that the electromagnetic lagrangian is the usual one.
~ One can derive the field equations directly from this lagrangian, or

rewrite the 5-dimensional ones (5) by using the dimensional-reduction
formulae (4) and the conformal transformation (7). They read:

where:

is the stress-energy tensor for the scalar field one usually finds a factor
2014 in front of the parenthesis, for the stress-energy tensor of a scalar
field, but here o is dimensionless, and the extra factor 20142014 is

4G
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is the (modified) Maxwell tensor, and

Notice that Maxwell’s equations (9 b) and the Maxwell tensor (9 e) are
not the usual ones in the vacuum. They are modified by a, as if there
were an electric permittivity E = e3 a and a magnetic permeability ~, = e - 3 ~
(so that EJl = 1 as usual in the vacuum). F~ is the tensor of electric field E
and magnetic induction B, whereas H~~ (9 f) can be interpreted as the
tensor of electric displacement D and magnetic field H in the vacuum.
Hence, Jordan-Thiry theory modifies Einstein’s and Maxwell’s equations
not only by considering the stress-energy tensor of the scalar field 6 in
(9 a), but also by making the vacuum behave like a material body. The
15 field equations (9 a), (9 b), (9 c) are completely coupled, A~ and a
appearing in each of them.
~ Bianchi’s identities:
Bianchi’s identities can be added to the field equations (9) of the theory.

Actually, because of the definition of the Riemann-Christoffel tensor
terms of r~B they are still valid in Jordan-Thiry theory:

[where the semicolon (;) means covariant differentiation, using the conf or-
mal metric 

Similarly, the first group of Maxwell’s equations follows from the
definition of F J!V = ðJ! A~:

1. 3. 5. Cosmological constant

If the cosmological constant A does not vanish, the lagrangian is a

simple generalization of the General Relativity one:

and the field equations read:

Annales de l’Institut Henri Poincaré - Physique théorique
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In terms of 4-dimensional fields, they read:

e Warning:
Since most of the other sections use only the conformal metric, we will

no longer use the *-notation for the metric, but stars should be understood
everywhere. For example, the notations given in Appendix B and the
generalized Schwarzschild solution of next section correspond to the con-
formal metric g~ .

1.4. Generalized Schwarzschild solution

1. 4 .1. Useful form for the 4-dimensional line element

In this section, we derive the solution of the field equations for empty
space, near a star. We assume that the fields are static and spherically
symmetrical, and we first study the case of a vanishing electromagnetic
field. The electromagnetic corrections will be considered in section 1.4.4.
The line element can be written:

(neither the standard nor the isotropic forms are used, for simplicity of
the following calculations; this is the choice made in [13]). Let us recall
that the conformal metric is used in this section, though no stars (*) are
written, in order to simplify the notations.

1. 4. 2. Affine connection and Ricci tensor

The affine connection is given by : = 1 ~ P + 

If a prime means differentiation with respect to r, the nonvanishing
components are:

Vol. 52, n° 2-1990.
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Rotational and time-reversal invariances of the metric lead to:

The other components are:

1. 4. 3. Field equations and solution

. If the electromagnetic field vanishes, the field equations for empty
space read:

The only nonvanishing component of the Ricci tensor is then:

6, z.

The field equations read then:

~ They lead to the solution:

where a, b and d are constants verifying:

The corresponding line element reads:

Annales de l’Institut Henri Poincaré - Physique théorique



125THEORY OF KALUZA-KLEIN-JORDAN-THIRY

The solution given here is chosen to approach the Minkowski metric for
r ~ oo . It is unique, with the restriction that one can redefine r and t by
affine transformations. [By changing the origin for r and the notations,
one can not recover the solution given in [ 13] or [21], because the value
for 6 ( 13 c) differs from ours by a factor 2.]

This metric reduces to Schwarzschild solution when d = 0, i. e. for o

constant, as expected.

1.4.4. Electromagnetic corrections

~ The field equations are given by (8). If the electromagnetic field is
not symmetrical, a general solution is not easy to write, and not very
useful for our purpose. If one wants to compute only the order of

magnitude of electromagnetic corrections to the generalized Schwarzschild
solution ( 13), one can consider a spherically symmetrical electromagnetic
field as an approximation.

Using a metric ( 12), the equations for Rtt and a read:

where E2 = - F r ~ Fr ~‘ and B2 = 1 F + E2.

One can then compute v’ and ~’ at a point ro:

where K~ and Ka are constants depending on the matter distribution of
the star(c/: §2.2.2).

Notice that spherical symmetry and Gauss’s theorem allowed us to
integrate from r=O to r = ro, and not on all space.

~ Another approximation:
If the electromagnetic field is negligible for r &#x3E; R (where R is some

chosen value), equations ( 15) prove that and are almost constant
for r &#x3E; R. Hence, the generalized Schwarzschild solution ( 13) is valid, with:

Then, Ky and Ka are the values of b and d for a vanishing electromagnetic
field.

Vol. 52, n° 2-1990.
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In this approximation, v and a are still given by equations (1 3 b) and
( 13 c), for r &#x3E; R:

where

These equations are useful in order to evaluate the order of magnitude
of electromagnetic corrections to v and a, but let us recall that two

approximations have been done:
- The electromagnetic field is supposed to be spherically symmetrical

[this is admittedly not realistic, but will allow us to get a rough estimate].
- It is supposed to be negligible when r is greater than a given value R.

1. 4. 5. Modifications induced by a cosmological term

When the cosmological constant does not vanish, field equations are
given by equations ( 11 ). One can compute the corrections to the gene-
ralized Schwarzschild solution ( 13) at first order in A. The field equations
read:

(where a flat metric is used for the terms involving A). They yield:

Then:

Annales de l’Institut Henri Poincaré - Physique théorique
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And, neglecting A:

This is an approximate solution, where band d are assumed to be negligible
with respect to r, and large with respect to 

2. MATTER

In order to test the experimental predictions of the theory, one needs
to describe matter fields and write the equations of motion of usual test
particles. Two different attitudes are possible.
The first (and historical) one is to consider that we live in the 5-

dimensional space, then that the equations of motion are given by its

geodesics. Since the signature of this space is hyperbolic, geodesics are of
three possible types. The aim of this section is to show that none of them
can be used to describe usual particles. More generally, we will see that
any attempt to describe usual matter in the 5-dimensional space leads to
experimental difficulties.
The second possible attitute is to consider the 5-dimensional space only

as a method to unify gravitation and electromagnetism, but not matter.
Consequently, there is no real reason to incorporate matter artificially in
the extra-dimensional space. Therefore, particle trajectories will be descri-
bed as in Einstein-Maxwell theory, i. e. by 4-dimensional geodesics with a
Lorentz force. With this choice, all the experimental problems that we
will discuss in this section obviously disappear. [We will also see in

Appendix A that all the predictions related to the post-Newtonian para-
meters of Schwarzschild solution are the same as in General Relativity,
hence consistent with experiment.]

2.1. Action of geometry on matter

We devote this section to the 4-dimensional description of the 5-dimen-
sional geodesics.

2.1. 1. Geodesics of the 5-dimensional manifold
~ Equations in the 5-dimensional space:
. The geodesics are written:

where {U"" is the unitary 5-velocity, verifying = sgn It remains
only to express the Christoffel symbols Tmn in terms of A~ and cr.

Vol. 52, n° 2-1990.
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The equation for the fifth coordinate can be written:

The second term vanishes, and one finds that Qj 5 is a constant. We shall
denote it as:

~ 

By writing the other equations in terms of the 4-dimensional metric g~,
and the fields F v and a, one finds:

(where are the 4-dimensional Christoffel symbols, corresponding to
the metric before conformal rescaling). In a more general theory where
the group U ( 1 ) is replaced by a group ~ or a homogeneous space 
this equation can be generalized and this is discussed in [18].

. In order for the gravitational constant G to be a constant, one must
use the conformal metric One finds:

This equation looks like the Einstein-Maxwell one:

but two differences must be pointed out:
- The scalar field a appears on the right-hand side of equation (20).
- The differentiations are made with respect to the 5-line element da I

in (20), but not to the proper time ds* I.
. To relate the constant q to 2014, one must write equation (20) in the 4-

m 
,

dimensional space, i. e. by expressing the 5-dimensional line element I
in terms of the proper time Lorentz force can be recovered by
comparing with Einstein-Maxwell theory, or by writing the newtonian
limit of the equations of motion.
~ Unitary 5-velocity:
. To write equation (20) in terms of the 4-unitary velocity u*~‘, one

must relate the unitary 5-velocity Um to it.

Annalos tlo l’Institut Henri Poincaré - Physique théorique
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When we derived the expression of g JlV in terms of in section 1.2.1,
we found:

Since the world line of a physical particle is always time-like, the line
element ds2 = dx  dx" is known to be negative, but we do not know a
priori the sign of da2:

From now on, the upper sign will always correspond to dcr2  0, and the
lower one to da2 &#x3E; 0.

If the conformal line element is used, one finds:

. One can then derive the formulae giving D’" in terms of and q:

Let us recall that we found (19):

Then:

One can also compute:

~ Equations written in the 4-dimensional space:
Using formulae (22), the equations of motion (20) read:

Vol. 52, n° 2-1990.
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To find Lorentz’s force, one must then define:

One finds: e = K q J _ e 
for a general conformal rescalin

m e 2CJ q2 ~ 1

cf. 9 1 3 . 3. Then, e is not a constant. We shall devote section 2.1 3 tom .

this problem.
The equations of motion read then, in the 4-dimensional space:

Notice that this equation gives the usual geodesics of General Relativity,
when a is a constant. The presence of cr is then the only modification to
General Relativity.

2. 1. 2. Lagrangian formalism

~ The geodesics are given by the extremals of the integral: L dp where:
, and p is any parameter describing the curve. (25)

dp
~ We know that the geodesics can also be obtained by extremizing the

integral: L2 dp where:
- uy

p being an affine parameter here [i. e. a curvilinear abscissa on the geodesic
in the 5-dimensional space]. Since the metric does not depend on X5,
Noether’s theorem ensures that there is a conserved quantity. It is given
by the Euler-Lagrange equation:

If p is taken to be the proper time: dp = ~ one can then define:

Annales de l’Institut Henri Poincaré - Physique théorique
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e Provided that we I and express the 5-unitary
m 

velocity U’" in terms of the 4-unitary velocity and the constant q, the
other equations:

lead to the generalized geodesics equation (24) given in the previous
paragraph (§ 2 . 1.1 ).

~ One can write the lagrangian in a more usual form, looking like the
one of General Relativity for a charged particle. Let us define L3 by a
Legendre transformation on L 1:

Since 2014~- = 0, we know that 2014~- is a constant. It can be related to q:x 
~ 

x 
R’

Then:

Since L1 depends on (xl, ..., Xl, ..., x4, X5), we know that L3
depends on (xl, ..., X4, xl, ..., X4, ::i: q). But q is a constant, then it
can be considered as a parameter labelling the action L3, depending only
on the four coordinates xl, ..., X4 and their derivatives. (This is the

Maupertuis principle, and is discussed for instance in [ 11 ], p. 159.)

Since: q d03C3 dp = 03B355x5 +03B3 5x , this lagrangian reads:

Remark. - Notice that p is any parameter describing the trajectory,
and not an affine one. This is fortunate, because an affine parameter for
the geodesics of the 5-dimensional space is not affine for the 4-geodesics!
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~ When a is constant, e and m are constant, and the lagrangian reads:
K ( - m + e A~ iP), where K is a constant.

The lagrangian of Einstein-Maxwell theory is recovered. Then, in the

limiting case corresponding to a constant, the extremals of the integral
are the usual trajectories of charged particles in General Relativity.

2. 1. 3. The sign of da2 and the variation of e
m

~ Formula (23 b) shows that in Jordan-Thiry theory, e-is not a constant
m

if a varies (and no conformal rescaling can make it constant). If e is
defined as the charge of the particle, m must be considered as an effective
mass, depending on a. If mo is the mass of the particle when a vanishes,
one finds:

2022 We already know that the upper sign corresponds to d03C32  0 (time-
like trajectories in 5 dimensions), and the lower one to dcr2 &#x3E; 0 (space-like
trajectories, i. e. tachyons in 5 dimensions). When the geodesics of the 5-
dimensional manifold are analysed from the point of view of the effective
4-dimensional space-time, they appear as curves (generally not geodesics)
whose space or time-like character depends on the local value of the scalar
field a. We have the following three cases:

. &#x3E; 0 - q2 e - q 2 Za ea -1 , and m2 is given by curve (a) below.
Notice that then m2 &#x3E; o and this branch could describe

usual particles since m2 can be small if (In q 1- a) is small. This is indeed
the choice made by Thiry [4], but we will see in the next paragraphs that
it leads to experimental contradictions. Notice that if a becomes larger
than becomes negative (4) and the corresponding trajectory
becomes tachyonic in our 4-dimensional space-time.

.  0 then e 2 - q 2 e a , and m2 is given by curve (b) below.
4 G m2

Then m2 is positive for all values of the scalar field a. However,
equations (9 a), (9 b) show that the theory is close to General Relativity

(4) Actually, m2  0 means that ds*2 becomes spacelike, since equation (23 a) was derived
assuming  0.
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only if z 1 [equation (31 b) will also prove that the electrostatic field
created by a charged particle is smaller than the observed one by a factor

e3~]. Therefore, the scalar field o must be very small near the Earth. But

for we find m2 ~ q2 + 1 q2 . e2 4G which corresponds to extremely heavy
masses, if e does not vanish a particle with charge 1 in electron units

should have a mass m &#x3E; e 2 G ~ 5 x 1020 Hence, these 5-dimen-

sional time-like geodesics cannot describe the motion of usual particles.
. d62 = 0. Then we have two branches:
The first corresponds to ds2 = 0 and this describes

massless neutral particles and is given by curve (c) below [the horizontal
axis].

The second corresponds to 1 = o and This describes massive

particles with infinite q, but with finite charge: 201420142014; = e3a. The behaviour
of these trajectories looks like the previous case (b), and is given by curve
(d). They also lead to extremely heavy masses when « z0, and cannot
describe the motion of usual charged particles.
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2.2. Action of matter on geometry

The action of matter on geometry is described by the right hand side
of Einstein equations - or of their generalization (5) -. Assuming only
that this r. h. s. is a symmetrical tensor (using the 5-dimensional
formalism), we will write these equations in full generalty. We will also
show how to use these equations to relate the parameters appearing in
the Schwarzschild solution ( 13) to the matter distribution of a star. Finally,
we will study the possible descriptions of a perfect fluid.

’ 

2 . 2 . 1. Field equations in presence of matter

~ In the 5-dimensional formalism, they can be written:

Using the formulae of sections 1.2.2 and 1 . 3 . 3, one can write them in
terms of 4-dimensional quantities:

where:

(the constant K was found in section 1. 3 . 4: K = 2 JG.)
[In an adapted frame, the formulae giving and J: are obvious:

~ The stress-energy tensor depends on the properties of matter
(one can consider a perfect fluid, for example), and is given by experiment.
Similarly, the electric current J~ depends on the charge distribution, and
can be measured. But our usual knowledge of matter does not allow us
to find the value of the scalar S. The only property we know, is that S
must vanish where matter and charges are absent. Then, the only way to
know the value of this scalar is to contruct models of matter in the 5-
dimensional space, and derive the corresponding S.
~ Equations (31) derive from the lagrangian:
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which can be written in terms of 4-dimensional quantities:

The only difference here with section 1. 3.4 is the lagrangian describing
matter Lmat.. It depends on the description of matter one chooses in the
5-dimensional space. But one can also choose the usual Lmat. of General
Relativity (depending on ~ but not on the scalar field a), in which case
S==0.

2. 2. 2. Field equations inside a star

In this section, we write the field equations inside a static and spherically
symmetrical star. The metric (12) will be used, and the constants b and d
introduced for the generalized Schwarzschild solution ( 13) will be related
to the matter distribution of the star.

Using the calculations of section 1. 4 . 2, the field equations (31) read
now:

The last two allow us to find the functions v’ e’ and inside the star.
Their values at the star radius R~ give the constant b and d, since p
and S vanish outside the star:

where bo and do are additive constants.
To assure that the metric and the scalar field do not diverge when r -~ 0,

we must take:

Notice that the scalar field o is completely determined by the properties
of the star, and is not an arbitrary field of the theory.

2 . 2 . 3. Jordan-Thiry description of a perfect fluid
This description is the natural generalization of a perfect fluid in the 5-

dimensional space:
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where p is the matter density, p is the pressure, and the sign ± is
introduced because U" may be positive.

We can use the expression of the 5-unitary velocity in terms of u*
and q (22) to find:

Then, we must redefine  and p, to obtain the usual stress-energy tensor
of a perfect fluid:

The fields equations are then given by (31), where:

Remark : Note that the redefinition of ~. and p gives for the
p*+~*

same formula as (23 b):

Hence, the Jordan-Thiry description of a perfect fluid, and the 5-dimen-
sional geodesics considered as equations of motion, lead to the same

formula for-e. The description of matter fields in the 5-dimensional
m

manifolds is then consistent with the description of particles moving in
this space.

2 . 2 . 4. Other descriptions o f a perfect fluid

~ A fluid which appears to be "perfect" in the 4-dimensional space can
be described in several ways. The most straightforward description is the
one that we just discussed. However, the scalar S appearing in equations
(37) is not given by our usual knowledge of matter. Each description of
matter in the 5-dimensional space leads to a different value of this scalar.

For instance, the following choice of T mn:
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where

leads to the usual 4-dimensional (36 a), and to equation (37) for

the ratio 2014201420142014, , but S vanishes for a neutral and pressureless fluid
~* +p*

- whereas the previous description of matter (35) gives a value of S
depending on ~* 2014.

Notice that even without using the equation of geodesics, a description
of matter in the 5-dimensional space leads to the variable value of 2014 given

m

by equation (23 b)
~ Yet another possibility is to describe matter as in Einstein-Maxwell

theory (in the 4-dimensional space), i. e. to write that Lmat. does not depend
on the scalar field a. This last choice leads to a vanishing S and to a

constant value of 2014. [For example, the lagrangian of an isentropic perfect
m

fluid in General Relativity is given in [22], and can be used in equation
(33).]

2.3. Impossibility of a 5-dimensional description of matter

We already saw that geodesics of the 5-dimensional space with 0

(time-like or light-like) could not describe usual particles. The only possibil-
ity left is to assume &#x3E; O. This corresponds to 5-dimensional tachyons.
Such a particle would appear as timelike in dimension 4 if the value of
the scalar field a is small enough. This was the hypothesis made by Jordan
and Thiry.
Nowadays, it is clear that quantum field theorists would be reluctant to
build a unified field theory out of tachyonic particles. Even in the case
where such a construction would be possible, the hypothesis that usual
particles correspond to 5-dimensional tachyons should be rejected for at
least two (experimental) reasons:

( 1 ) Charged particles acquire a gravitational mass different from their
inertial mass, and this difference is too big.

(2) It leads to variations of the effective mass which are not compatible
with what we observe.
The first problem has already been noticed in the past as a probable

difficulty of the theory, but we have not found in the literature any
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comparison with experimental data. Moreover, only the Jordan-Thiry
perfect fluid was considered in the past to describe the Sun. In section
2.3~1, we show that any description of the Sun leads to experimental
inconsistencies. Section 2. 3 .2 is devoted to the second problem, which is
a consequence of the choice of 5-dimensional tachyons to describe usual
particles. [A third problem of less importance is discussed in Appendix A:
the precession of Mercury perihelion.]

2.3.1. Gravitational masses of charged particles

~ Newtonian limit of geodesic equation:
. Newton’s gravitation law can be obtained by writing the equations

of motion for a static neutral particle (cf. [23], § 3.4). The generalized
geodesics equation reads now:

If we use the spherically symmetrical metric (12), we find for the radial
variable:

Newton’s theory is then obtained if:

2GM=b-d (39)

[b and d are the constants introduced in equations (13)].
. If the generalized geodesics equation is written for a static charged

particle, one finds for the radial coordinate:

[where Er is the radial component of the electric field]. The first term is

the usual gravitational term 20142014,2014, but the second term is also an

,
interaction in 1 2‘ (this had already been noticed in [1], and more recently
in [15]). Since the gravitational mass of charged particles is known to be
very close to their inertial mass, this second term must be negligible with
respect to the first one. Then, we find an upper bound for the derivative
of o:
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2
For usual charged particles, 201420142014 is very large with respect to 1. For an

4 G m

electron, its value is about 10~. Hence, equation (40) can be written:

] (41)

The ratio - depends upon the description that we adopt for the 5-
b

dimensional perfect fluid.

. The Jordan-Thiry description of a perfect fluid (35) i

The second description we studied (38) gives ’ ’ I with the order of p
~

[which is about 10 ~ at the Sun center]. Then, these descriptions are not
compatible with equation (41).

. It can be seen that a description leading to S = 0 is also incompatible
with what we measure. Indeed, the electromagnetic corrections (§ 1.4.4)
imply that the condition ~M"~! 10’~M should be satisfied, if C E
and ~M denote the electric and the magnetic energies of the Sun respec-
tively. This is certainly not the case experimentally.
. Conclusion of section 2.1.3.
If the equations of motion are supposed to be given by the geodesics of

the 5-dimensional space, the gravitational masses of charged particles are
found to be very different from their inertial masses, because of a "5th
force" due to the scalar field.

If the motion of usual particles is described as usual by 4-dimensional
geodesics with a Lorentz force, this problem obviously disappear, although
the scalar field is still present, unified to gravity and electromagnetism (in
the non-physical 5-dimensional space).

2.3.2. The variation 6~ 2014
m

. If one assumes that the geodesics of the 5-dimensional space give the

equations of motion, one finds equation (23 &#x26;): -~= 2 q / ~ . The
m B~’~~±1*

same formula is found for 03C1 * + p* [equation (37)] if one uses a 5-dimen-

sional description of matter fields, like the Jordan-Thiry perfect fluid (35)
or the description (38), Then, these ratios are variable, and one must
check if these variations are small in the Solar system where ~ is found’ 

m

to be (almost) constant.
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. We showed in section 2 .1. 3 that only space-like (i. e. tachyonic)
geodesics of the 5-dimensional manifold can describe the motion of usual
(light) particles. Therefore, the minus sign must be used in the square root
(23 b), (37).

. If o is close enough to 0, so that m : mo [where mo is the mass of
the particle when u vanishes (29)], one can compute the constant q for
electron and proton, for example:

For electron, one finds:

For proton:

Then q is very close to 1 or -1 for usual charged particles.
. Since q2 -1 is very small, ~’~~20141~(~20141)20142 o may be very

different from q2 -1, even when o is close to 0. For a small o, equation
(29) yields:

When we derived the generalized Schwarzschild solution (13), we found

that o varies like -:

It must be negligible with respect to q2 - 1, so that m is almost a constant
in the Solar system. Therefore, we find an upper bound for a:

The smallest value of q2 -1 is found for electron:

Then, the condition (43) reads:

. This condition is less restrictive than (41), because b is almost equal
to the Schwarzschild radius of the star [cf. equation (14)], and is negligible
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with respect to usual values of r. However, it also leads to experimental
inconsistencies for the Jordan-Thiry perfect fluid, and for the other possible
descriptions. Actually, if r is an astronomical unit (i. e. the distance Earth-

Sun), one finds: Then the results of section 2.3.1 can be
r

used, with multiplying the upper bonds by 10~.
. If one uses a description of matter leading to S = 0, the electromagnetic

corrections must be taken into account. The condition (44) reads:

This condition is certainly not verified either.
o Conclusion of section 2. 3. 2
Both the assumption that particles move on the geodesics of the 5-

dimensional manifold, and the descriptions of matter fields in this space

(35), (38), lead to the same formula which depends on the scalar
m

field cr, and whose variation is inconsistent with what is measured.
Of course, this problem is cured when one chooses the usual description

of matter in the 4-dimensional space, like in Einstein-Maxwell Theory. In

this case, 2014 is defined as a constant, and matter fields are assumed not to
m

depend on the scalar field o.

APPENDIX A
PERIHELION SHIFT OF PLANETARY ORBITS

In order to rule out the original theory of Jordan-Thiry which incorpor-
ates artificially matter fields in the 5-dimensional space, we need only one
experimental contradiction, and we have already underlined two of them
in section 2. 3. However, we want to discuss here the problem of the
perihelion shift of planetary orbits, because it is sometimes claimed in the
literature that this is the experimental test which rules out the theory. The
aim of this section is to clarify three points:
- The previous calculation by K. Just [13] is in fact incorrect.
- If the Sun is not described as a Jordan-Thiry Perfect fluid, it is

possible to predict a perihelion shift which is consistent with experiment.
Hence this test is not sufficient to rule out the original theory.
- If planets are assumed to follow usual 4-dimensional geodesics, one

finds the same prediction as in General Relativity, although the scalar
field modifies the Schwarzschild solution.
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In this section, we use the results of section 1 . 4, i. e. the generalized
Schwarzschild solution. The 4-dimensional line element is given by (12),
and no stars (*) are written, though the conformal metric is used. We first
study the predictions of the theory when 5-dimensional geodesics are
assumed to give the equations of motion. The last paragraph of this
section will be devoted to the predictions when the 4-dimensional geodesics
are considered.

A 1. Expression of the perihelion shift

We study the motion of a (neutral) planet around a star, assuming that
the equations of motion are given by the 5-dimensional geodesics equation:

If e = ~, they lead to :
2

If one looks for a precessing ellipse: r= L (where e is the
1 + e . cos oxp

eccentricity and L the semilatus rectum), one finds at first approximation
. b d
in 2014 or 2014:
L L

Therefore, the perihelion shift is given by:

since 2 MG = b - d [equation (39)].
This is the General Relativity result with a corrective factor
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A. 2. The Sun as a Jordan-Thiry perfect fluid

. If one describes the Sun as a Jordan-Thiry perfect fluid, one finds:

But the Sun in on average neutral, then the second term can be neglected.
Equation (34 b) allows us to compute the constant d introduced in the
generalized Schwarzschild solution (13):

Formula (34a) also gives b in terms of y and p. Then, the generalized
Schwarzschild solution is completely determined.

Notice that since 2 MG = b - d, the solar mass is not given by an integral
of  as usual, but of:

This comes only from the fact that the radial coordinate r is not the
standard one.
. Formula (46) gives the factor fcorrecting the General Relativity result

for Mercury perihelion shift. Using the values of band d corresponding
to the Jordan-Thiry description of a perfect fluid, one finds:

The higher limit is obtained for an extremely hot star (p ~  3), while the

lower one corresponds to a "cold" star (p ~ 0).
. The value of f corresponding to the Sun is close to the lower bound

of this interval because it is "cold". Actually, even at the center of the
Sun, where the temperature is about 15 x 106 K, the pressure is negligible
with respect to the matter density:

Thus, the Jordan-Thiry description of matter leads to:

. Experimental results for Mercury ([24], [25]) give:
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Hence, if the Sun is considered as a neutral perfect fluid, the Jordan-
Thiry description of matter predicts a value of f which is not compatible
with experiment. K. Just [13] pointed out this problem, but his value

for f&#x3E; was wrong. (He worked on an earlier version of Jordan-Thiry
4 

g ~ y

theory, with a variable gravitational "constant" G; but our result is also
valid in his case.)
. One may try to improve this numerical result for f by considering

the electromagnetic field of the Sun. To get a rough estimate of the
electromagnetic corrections, one can use the results of section 1. 4. 4 for a
sherically symmetrical field, which becomes negligible for r greater than a
given value R. One can take for R the typical length of the problem, i. e.

the semilatus rectum L of Mercury orbit.

For the Sun, the pressure p can be neglected in the first integral. If one
denotes the electric and the magnetic energies of the Sun respectively as

and one finds that f is shifted towards 1 if: 
This condition is not absurd inside the Sun, and is actually verified

outside it. Then, electromagnetic corrections draw the corrective factor f
towards 1. But to find an experimentally consistent perihelion shift,

6~) should be of the same order of magnitude as M, which is really
6

too large ! Therefore, electromagnetic corrections are not large enough to
lead to an experimentally compatible perihelion shift.

~ Another way to improve the numerical value of f is to consider a
cosmological constant in the equations. One can use the results of section
1. 4 . 5 to compute f, at first order in A :

For our "cold" sun, it reads:

(If one calculates the cosmological constant influence on the perihelion
shift in General Relativity, one obtains a corrective factor: ~+039BL4 6 G2 M2

Annales de l’fxtstitut Henri Poincaré - Physique théorique



145THEORY OF KALUZA-KLEIN-JORDAN-THIRY

Hence, the cosmological correction in Jordan-Thiry theory is exactly the

same as the General Relativity one, the extra factor ~ 3 being a consequence
of the Jordan-Thiry description of a perfect fluid. ~
The corrective factor f to General Relativity can be drawn closer to 1

if A&#x3E;0, i. e. if the vacuum quantum energy is positive, as it is thought to
be. With our sign conventions, a positive cosmological constant corres-

ponds to gravitational forces vanishing faster than  for large r as if
the graviton had a mass /2A ). But the cosmological correction cannot
lead to an experimentally compatible perihelion shift, because the matter

density of the Universe would have to be negligible with respect to 20142014, ,
which is clearly not the case.

A. 3. The Sun as another perfect fluid

If we use other descriptions of the perfect fluid, for example the ones
given in section 2.2.4, the conclusions are modified. In the particular

case where X is given by (38 b), one finds S=20142014/?, and the value of f
is now in the interval: 1 ~f~55 51. (Actually ,: 1 for a "cold" sun such as
ours.) If a description of the perfect fluid leading to S = 0 is used, one
finds d= 0 and f= 1 like in General Relativity. This problem of the value
of the perihelion shift could therefore be cured by a (somewhat arbitrary)
modification of the expression of T mn. However, the electromagnetic

corrections involve the ratio ~M - ~E which may be of the same order of
M

magnitude as the experimental bounds (50). Hence, this study of Mercury
perihelion shift may rule out the original theory, if one gets a good
evaluation of the experimental uncertainties are lowered.
But in any case, this possible experimental inconsistency would be far less
"spectacular" than the two ones that we pointed out in section 2. 3.

A. 4. Perihelion shift when planets are assumed to follow 4-geodesics

. One experimental inconsistency suffices to rule out a theory. On the
contrary, one must check all the exprimental results to show that it
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may be corrcct. Nowadays, the numbcr of experimental confirmations of
Genefal Relativity is large (cf 12S]}, and we do not claim that Mercury
perihelion advance is a sufficient test. However, we will devote this para-
graph to this problem, in order to show that Kaluza-Klein-Jordan-Thiry
theory predicts the same value as General Relativity if planets are assumed
to follow usual 4-geodesics, although the scalar field c modifies the
Scbwarzschild solution.
. Actually, if the 4-dimensional line-element ds2 is written in the iso-

tcopic form:

where p and y are the Parametrized Post Newtonian parameters, i t is wdl
known that the perihelion advance of a planetary orbit is the one predicted

by General Relativity multiplied by the corrective factor ~ ~ ~ 2 ~.
3

. Let us rewrite the line-element (14) in its isotropic form by redefining
the radial coordinate. We find:

Hence, when planets are assumed to follow 4-geodesics, one finds:

b = 2 GM instead of (39): b-d=2GM] (54)
and:

Therefore, one finds exactly the same prediction as General Relativity.
. The presence of y~--(13c) modifies the Schwarzschild solution

r

only at order 2014 for gu and 2014 for grr. Moreover, the corrections at these
r r .

orders involve the ratio [since we consider now the usual
&#x26; B M
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4-dimensional description of matter, S vanishes m equation (31 c), and the
source of 03C3 is only the electromagnetic field..] Hence the modificafom of
Einstein-Maxwell theory created by the scalar field 03C3 not only occur at

higher orders than the past Newtonian but ate also very small!

. Let ss underline that the other experimental predictions involving
oniy the parameters P and 1 will be the same as io Einstein-Maxwell
theory. For instance, the defloction of light by the Sum, which depends on
,- Acmdy, the vacuum ’behaves for electromagnetic waves like a material
body with electric permittivity ~ = e303C3 and magnetic permeability  = e-303C3,
so that ~= 1 .3.4). Therefore, the speed of light remains
equal to c, even if a is BOt constant, and there is tlO deflection caused by
a variation of index - like in an optical lens - .

APPENDIX B

CONVENTIONS AND NOTATIONS

B. .1. 4-dimensional manifold d General Relativity

B ..I , I , Conventions

The conventions used in this paper are the MTW ones p6j. The signa-
ture of the metric is (- + + +). The speed of light is taken to be unity
(c = 1), but not the gravitational constant G (5). We also take &#x26;== 1.

The notation used in this paper for the Dalembertian is: D = V P V*’.
’ 

B. 1.2. Fundamental fields of the theory

(i) The gravitational fiekJ: g 03BD (which allows us to define the line element:

(ii) The electromagnetic potential: 
(iii) The scalar field: o.

( Sometimes, it is more convenient to use the scalar field cr* =-7, in which
case most of the equations are trivially modified. C~ also the remark at

the end of section 1.3.3.)

(~) The gravitational "constant" G is indeed constant in the formulation that we adopt
here. We show in section !. 3.3 that a conformal transformation on the 4-dimensional metric
is necessary to achieve this.
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B. 1 . 3. Most important tensors

(a) The Einstein tensor

(We do not denote it as G,, in order to distinguish its contraction: E = E~~
from the gravitational c.onstant.,)

(6) The tensor of electric field E and magnetic induction B :

(c) The tensor of electric displacement D and magnetic field H, in the
vacuum: 

.

(d) The modified Maxwell tensor

(e) The stress-energy tensor for the scalar field cr

B. 1.4. Charged or neutral matter fields

These are described by:
(/) The stress-energy tensor: T~ .
(g) The electric 4-current: where p is the charge density, and

is the unitary 4-velocity satisfying: u  = - I..

B. 2. The 5-dimensional manifold

B. 2.1. 

The 5-dimens-ional coordinates are denoted as ~~, ~~. ~B .T~) where
the first four are. those which are used in General Relativity. The signature
of the metric is (-.+,+,+,+) 

B 2.2. The 5-dimensional line element

(i) ~?, ..  vary from 1 to 5" whereas Greek indices vary from 1 to

4 as usuaL

(u) metric: 
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(iii) line element: da2 = ’Ymn dW. [This cr is not the scalar field!] .

B. 2. 3 . 5-dimensional Einstein tensor

B. 2. 4. Matter fields

(d) Stress-energy tensor describing matter and charges: 
’This tensor may depend on the unitary velocity of the 5-dimensional

space:

(c) Unitary 5-velocity: U"’ = [verifying: Urn 

There must be no confusion between the covariant differentiations in
the 4-dimensional and the 5-dimensional spaces:

( f) Covariant differentiation of .
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