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ABSTRACT. - Let (Q, J2/, S, ~) be a dynamical system where (0, d) is a
Lebesgue space, S a measurable transformation on Q leaving the measure
of probability ~ invariant. We suppose that (~, d, S) admits a generator

for which Jl is exponentially mixing. We prove that the hitting times Tn
of ~-measurable rare events Dn, renormalized by a suitable sequence (PJ,
converge in law to the exponential law of parameter +1. We prove how
the asymptotic behavior of the is. We give finally examples in the
case of expanding maps, illustrating the theory of large fluctuations.

RESUME. 2014 Soit (0, A, S, Jl) un système dynamique où (Q, A) est un
espace de Lebesgue, S une transformation mesurable de Q qui laisse la
mesure de probabilité  invariante. Nous supposons que (Q, d, S) admet
un générateur P pour lequel Jl est exponentiellement melangeante. Nous
demontrons que le temps d’atteinte Tn d’un evenement rare mesura-

ble, normalise par une suite adequate (?~), converge en loi vers la loi

(~) Partially supported by FAPESP Grant n° 88/2161-8.
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268 A. GALVES AND B. SCHMITT

exponentielle de parametre + 1. Nous donnons Ie comportement asympto-
tique de la suite Nous illustrons ces resultats de grande deviation sur
des exemples de transformations dilatantes.

Dedicated to Prof. T. E. Harris on his 70th birthday.

1. INTRODUCTION

How long does it take for the orbit of a dissipative system to perform
a large fluctuation? In this paper we show that for some mixing finite
dimensional dynamical systems, the first occurence time of a large class
of rare events converge in distribution to exponential random times.
Moreover we show that the right time scaling to catch the large fluctuation
is related to a free energy-like function of the system.

In recent years it has been recognized that physical systems which
behave in a chaotic way share many of the qualitative features of the time
evolution of finite dimensional dynamical systems. The study of the ergodic
theory of such systems is a topic of current interest in statistical physics
and in probability theory (for a good review of the field we refer the
reader to [1]).

However, as far as we know, from a strictly statistical point of view
the situation is less satisfactory. Experimental measurements of ergodically
relevant parameters are, in many cases, made without any serious statistical
control. In particular no attention has been given to the exact distribution
of relevant hitting times. It is hardly necessary to point out that making
statistical inference is a much more difficult task when the probabilistic
law of the variable being measured is unknown.

In this paper we study the asymptotical distribution of hitting times of
rare events for Gibbsian dynamical systems. A typical example of the
situation we consider is the following. Let I and J be two disjoint closed
sub-intervals of [0,1] ] ] be a C1 +E E function such that
I f I &#x3E;__ 6 &#x3E; 1 and 1(1) =/(J) = [0, 1 ] . Let K = U ([0, 1 ]) be the Cantor-

i

invariant set under f. There is a "natural" probability measure, the so-
called Gibbs measure ~ on K invariant under f It can be defined as the
limit, as n - oo , of the image by f" of the uniform distribution on [0,1 ],
renormalised by a constant C". This is the probability measure we see
when we perform a computer simulation of the system. For instance, if

Annales de l’Institut Henri Poincaré - Physique théorique



269OCCURENCE TIMES OF RARE EVENTS

we choose a point x at random, according to the uniform distribution in

n ([0,1]), then the proportion - #{ n = 1, ..., (x) e I} converges
N

to 03C1 =  (I), as N ~ ~.
We are interested in the distribution of the number of steps an orbit of

the system makes, until, for the first time, it spends in I a proportion of
time different from p. More precisely, let us take q&#x3E; p and for every
N~1, define the rare event:

Since q &#x3E; p, by Birkhoff s ergodic theorem, then lim J.l = 0. Neverthe-

less any typical orbit of the system will enter We can define the hitting
time:

for any x belonging to K.
Our theorem states there is an increasing sequence of positive integers

L such that2014~ converges in law to an exponentiel random time,~N
as N - oo .

The theorem says also that this scaling factor is logarithmically
equivalent to where free energy associated to the
ratio q - is defined as:

This suggests a dynamical way to estimate the free energy of the system.
The fact that the limit law of is exponential means that the time

PN
needed to perform the large fluctuation is unpredictable: to know that the
orbit evolved for a certain amount of time without performing the rare
event does not give us further information about the future step in whichit will occur.

This unpredictability is a consequence of the sensitive dependence onthe initial condition of the system. Two orbits, even if they start very close
one to the other, behave in distinct ways, and reach the rare event at
completely different times.

This type of phenomenon was first pointed out by R. Bellman and
in the context of Markov chains ([2], [3]). It plays a crucialrole in the so called pathwise approach to metastability" ([4], [5], [6]).

Vol. S2. n° 3-1990.



270 A. GALVES AND B. SCHMITT

The relationship between free-energy functions and occurence times of
rare events for stochastic spin systems was stressed in [7], [8]. Related
results for escape times for expansive dynamical systems were presented
in [9], [10].

In the next section, we will state and prove our main theorem. In

section 3 we will prove the conditions of the theorem are fulfilled in the

case of the example presented in this introduction.

2. LIMIT LAW OF HITTING TIMES OF RARE EVENTS

Notations; statement and proof of the theorem

Let (Q, j~, S, ~,) by a dynamical system where (Q, ~ ji) is a Lebesgue
space and S a measurable transformation on Q leaving the measure of
probability p invariant. 

n- 1

If P is a finite measurable partition of Q, we note by v S - i P the
t=0

n- 1

measurable partition of Q the atoms of which are n Cji being an
i=0

n-1

atom of P. We will note by Cn an atom of v S’’P, or Cn (x) the atom
i=O

of this partition containing x.
The dynamical systems we will study now are exponentially strong

mixing, that is to say:
(i) There exists a finite measurable partition P such that:

Remark. - This exponentially strong mixing property implies in particu-
lar that the dynamical system (Q, d, S,).1) is weak-Bernoulli for the parti-
tion P (refer to [11]).

Let {Dn)n EN be a sequence of measurable events verifying the following
properties:

Annales de l’lnstitut Henri Poincaré - Physique théorique
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We consider the sequence of random stopping times Tn associated with
Dn and defined on Q by:

We define:

and

Finally, we note by Exp (+ 1) the random variable defined on R+, the
law of probability of which is the exponentiellaw of parameter + 1.

THEOREM:

I . The sequence ( Tn 03B2n) n~N converges in law to Exp ( 
+ 1) when n - ~.

We are going to prove the first point of the theorem. It is sufficient to
prove that:

Indeed, let us suppose this property is true. By definition of P~:

On the other hand, it is clear that:

Since lim Jl (Dn) = 0 by hypothesis, we can conclude that:
n

This means that: lim gn (1) = e-1.
n ~ ~

Following (0), we can infer that: lim gn (k) = e -k, b’ k E N.
n ~ ~

This property extends in a classical way to the rationals, and then to
real numbers, so that: which is equivalent

n

to the convergence in law of 
e 

to Exp(+ 1).

Vol. 52, n° 3-1990.



272 A. GALVES AND B. SCHMITT

Let us define:

where dn is a sequence of integers with properties we will later define.
We have:

It is clear that:

Following the condition 2, one can find a constant c&#x3E;O, such that, for n

large enough:

n-i

The condition (ii) implies that if D~ (resp. DJ is v S - i P

~ ~ 

o

(resp.  S-i P)-measurable, then:

Since

Finally, using the same argument as for (1), we obtain:

Choosing a sequence (dn) of integers so that 
when n tends to infinity, the result is proved.
We have to prove the point 2 of the theorem. One can first notice that:

Annales de l’Institut Henri Poincaré - Physique théorique



273OCCURENCE TIMES OF RARE EVENTS

Then:

This inequality means that P~ is larger than any integer t such that:

1 - lJ.l (Dn) &#x3E; e -1. In other words:

On the other hand, let a be a real number such that a&#x3E;8. It is easy to

verify that:

f or any integer no.
Following the mixing property (ii) of Il, it is clear that for every

v S’’P(resp. v S - i P -measurable sets En (resp. Em) we have:
And so, after (5) and (6), we have:

Now, let us choose an integer no such that:

we are going to study each of the righthand terms of (7).

because of (8).

On the other hand, , since we have
n

~ ~Dn) &#x3E; e - n ce + s~ for every 6 &#x3E; 0, and n large enough. That is to say:

Then:

But:

Vol. 52, n° 3-1990.



274 A. GALVES AND B. SCHMITT

when n tends to infinity and so following (7) and (9), we have:

Jl (Tn &#x3E;_ - - 0, for every Ö &#x3E; 0 such that oc - Ö - e &#x3E; o.
We conclude that: p (Tn &#x3E;__ tends to zero when n tends to infinity for

any (x&#x3E;6, and so for any such a.
This property and (4) imply the point 2 of the theorem.
It remains to prove 3.
We first notice that:

Let B be the following measurable subset of Q, defined by:
B = {Tn &#x3E; P~}, where p is an integer.
We have:

fln p

Now, Be v S’’P and the gaps between the sets is larger than
f=0

?~ p. So applying (ii), we have:

By part 1 and 2 of the theorem, lim gn (p) = e - p and lim ?~= + oo .
n - oo n

Then let us choose an integer p such that: e - p _ 1 we can find an
integer n* such that, for every n~n*, we have:

And so:

Therefore, gn (t) is bounded by a function of type 0(1) ( 2" 1 )[1/3 
p] 

for n

large enough, this function belonging to L1 (R+, dt).

Annales de l’lnstitut Henri Poincaré - Physique theorique
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This enables us to use the dominated convergence theorem to get the
limit:

Two examples of rare events

a. The sets of non generic frequencies
To illustrate this paragraph, we consider a piecewise expanding 

transformation defined on the interval [0,1]. In fact, we will prove that
the sets of non generic frequencies have the properties 1 and 2 of rare

events in case of two branches, but the case of a finite number can be
treated in the same way.
More precisely, let Io and Ii be two disjoints or adjacents sub-intervals

of [0,1] and f a transformation defined on Io U 11 such that:
A. f (Io) =/(!,) =[0,1].
B: f/It is C1 +E, i=1, 2; moreover, there exists a constant (J&#x3E; 1 such

that: I f’/I~ ~ I ~ (J.
It is well-known that among the f-invariant measures, there exists an

unique one Jl having the Gibbs properties; in particular Jl verifies the
properties (i), (ii), of paragraph 2, relatively to the 
Moreover this measure ~, has another metric property, that is to say the
near bernoulli property:

(see [11 ]; [12] for more details).
Because of the ergodic properties of J.1, the following generic property

is true:

So, if we consider, for a fixed real number a &#x3E; p (resp. Ct  p), the
n- 1

v f - ~ 9-measurable set:
o

Vol. 52, n° 3-1990.
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it is clear that:

We will prove that in fact, the subsets A~ have the properties 1 and 2.

Remarks: 1. When the sub-intervals Io and 11 are disjoint, we have to
work on the Cantor-set:

where all the iterates of f are defined, and the definition of An is:

2. The property 2 for A~ could be proved using the theory of large
deviations by Ellis [13]; our purpose here is to give a short and simple
proof using probabilistic properties only.
LEMMA 3 .1. - The sequence is sub-multiplicative modulo the

constant L.

Indeed, clearly we have:

Then:

n+m-1

But the sets An, Am being respectively measurable for v f - i ~,
, 

o
n- 1 

..

v f ’ - i ~, it follows simply from (iii), that:
o

The lemma is proved and the following limit exists:

LEMMA 3 . 2. - The limit c (oc) is strictly negative for a &#x3E; p; of course,
c(oc)=o for oc p.

Let a and a’ two real numbers such that p  a’  a, and 03B4 = 03B1-03B1’ 1-03B1’. For
all integers n, k &#x3E;_ 1, we have:

Annales de /’lnstitut Henri Poincaré - Physique théorique
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Indeed, let x be an element of Ank; it verifies the property:

Let J 1 be subset of J== {0,1, ..., k -1 ~ defined by:

We have:

Therefore:

We can conclude that x belongs to

Following ( 10), we have the inequality:

Now, using the mixing property (ii), we have:

Let us choose now no large enough, so that:

Vol. 52, n° 3-1990.
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By ( 11 ) and (12), we have:

Q.E.D.
Remark. - In a general way, we can be interested in large deviations

properties for functions of the same kind as the functions 1~/ -~(i ).
t==0 

’

where 1.

Using once more the ergodic theorem:

and so rare events can be defined which would have the same properties
1 and 2.

b. The sets of non generic expansitivity
We consider the previous example. It is well-known a generic Lyapunov

exponant exists ~ such that:

the measure of probability p being the Gibbs measure previously defined.

Now we note by Cn (x) the atom of v f-i P containing the point x of
t=0

the Cantor-set K, and In (x) = ~ (Cn (x)) where À is the Lebesgue probability
on [0,1].
The expansivity of f implies the following distorsion property:

An immediate corollary for the function /~ is that:

So it is clear that following the mean value theorem we have:

It is natural to consider subsets of type:

Annales de l’Institut Henri Poincaré - Physique théorique
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These subsets are cylindrical events and rare events for the measure ~.
In order to prove they are relevant of our theorem, we have to prove
that:

The method used for subsets of non generic frequencies is not relevant

here and we will follow Ellis’s argumentation [13].
We consider;

where t is a real number.

With our notations we have:

But, by the property (iii) of the measure ~ and (1), two constants exist
 such that :

for all Cn and C~.
It follows that the sequence (cn (t)) verifies a property of sub-additivity

modulo and K~4~ and we can conclude that the following limit exists:

D. Ruelle [14] proved in this expanding case that the function c (t) is

analytic in t; moreover, it is convex. Following Ellis, we can define the
Legendre transform of c (t):

Vol. 52, n° 3-1990.
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and:

Because of the fact that c (t) is analytic, it is obvious that:

where to is the unique real number verifying c’ (to) = s. Moreover, the
function I has the unique infimum 0 at the point x. So we have the

property (2), and these rare events A~ have the property of "exponential
hitting times".

Question. - It is easy to see that c (t) is the following limit too:

We can define the subsets:

for a real The property 2 remains valid for the But the events

B~ are not cylindrical, and so we loose the property (ii) of exponential
mixing.

Is the property of "exponential hitting times" always true for the Bn’s?
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