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Matched pairs of topological Lie algebras
corresponding to Lie bialgebra structures on diff(S1)
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ABSTRACT. - We give a rigorous construction of Lie bialgebra-type
structures on and diff (R) in the form of matched pairs of

topological Lie algebras. These correspond to an heuristic class of Lie
bialgebra structures on diff(Sl) proposed by Witten, obtained from a class
of solutions of the Classical Yang-Baxter Equations. We identify a novel
topological obstruction to constructing a matched pair based on 
in the non-complexified case. Because of this obstruction, the problem of
exponentiation to a matched pair of groups based on remains

open.

RESUME. 2014 Nous construisons rigoureusement des structures de bigèbre
de Lie sur et sur diff (R) dans la forme de paires assorties (qui
amenent a des algebres de Lie bicroissees). Ces paires assorties correspon-
dent a une classe heuristique de structures de bigebre de Lie sur 
proposée par Witten, obtenue a partir d’une classe de solutions des equa-
tions de Yang-Baxter classiques. Nous identifions une obstruction nouvelle
dans le cas de ne pas complexifié. A cause de cette obstruction,
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16 E. BEGGS AND S. MAJID

Ie problème d’exponentiation a une paire assortie de groupes basee sur
Diff(S1) reste.

1. INTRODUCTION AND PRELIMINARIES

The notion of a matched pair of groups was studied in [Mack] [Tak]
and more recently (and independently) in [Ml] [M2] and in [LuW] and
(at the Lie algebra level) in [KM] [AK], among others. Two groups G1,
G2 are a matched pair if they act on each other and these actions (x, P
obey the condition

where e denotes the relevant group identity. A pair of topological groups
is matched if such a and P exist and are continuous. When (Gt, G2) are
a matched pair of groups, one may form a bicrossproduct group G2
defined on G ~ x G 2 by

In the case when G1 and G2 are finite, one may also form a bicrossproduct
Hopf algebra Here k is a field, k [G 1] the convolution

algebra on G1 and the function algebra on G2. In a similar context
of algebraic groups, [Tak] was able to show that a certain Hopf algebra
of Taft and Wilson was of bicrossproduct form. New examples in this
Hopf algebra context were given in [Ml] in connection with a new algebraic
approach to systems combining quantum mechanics and gravity [M3].
Purely differential-geometric aspects needed for this were given in [M2].
Matched pairs of Lie groups and their bicrossproducts are connected

at the Lie algebra level to the Classical Yang-Baxter Equations (CYBE)
and to the notion of Lie bialgebras introduced in [Dri]. This connection
in the finite dimensional case was the basis of [M2] and of [Lu W] [KM]
[AK]. In the present paper we supply the necessary functional analysis
needed to extend this connection to the context of the infinite dimensional

Lie algebras and diff (R). This enables us to give a rigorous
version of a class of Lie bialgebra structures, proposed in [Wit] in the
context of string theory.

Annales de l’lnstitut Henri Poincaré - Physique théorique



17diff ~51~ BICROSSPRODUCTS

We now recall the relevant algebraic theory from [Dri] and [Ml,
Section 4]. See also [Lu W] [KM] [AK]. The notion of a matched pair of

Lie groups linearizes to the notion of a matched pair of Lie algebras 
as

follows. Two Lie algebras (gi, g2) are a matched pair if gl is represented
on the vector space of g2 by a and g2 is represented on the vector space
of gl by P, and for all 03BE1, 03BE2~g1 and ~, ~1, 112 Eg2

For concreteness we shall work over R or C. If the Lie algebras are

topological, we require the actions a, P to be continuous. A coadjoint
matched pair of Lie algebras is a matched pair of the form (g, g*) where

g* is the dual space of g and where the actions a, P are the mutual

coadjoint actions. Explicitly, this means a matched pair (gl, g2) in which

gl and g2 are paired by a bilinear pairing ~ , ~ and the (left) actions ex, P
are defined via

The pairing should be non-degenerate, i. e. such that ( ,~2 ) = gi , i. e the

map g2  gi defined by the pairing is an isomorphism. (And similarly
is an isomorphism.) In the topological case g2 = g~ the continuous

dual. If gl and g2 are paired topological Lie algebras and a and P obey
the above but the pairing is not non-degenerate or only partially defined,
we say that the matched pair is of coadjoint type.
The notion of a Lie bialgebra as introduced by Drinfeld [Dri] in connec-

tion with Poisson structures on Lie groups, is the following. A Lie

bialgebra is a pair (g, 8) where g is a Lie algebra and 8:~-~(x)~ is a
Lie coalgebra [Mic] and in addition 03B4~Z1ad(g, g ~ g) i. e. a one-cocycle in
the Lie algebra cohomology [Hil, Chapter VII, Section 4] of g with values
in g (8) g. Here g acts on g (8) g in the adjoint representation of g on g,
extended as derivations to higher tensor products. Explicity, the require-
ment that 8 define a Lie coalgebra is

(id (8) õ) õç + cyclic permutations ing(x)g(x)g=0, 

(the coJacobi identity). Explicitly, the requirement that Õ is a one-cocycle
as required is

where (Ç,2) = [Ç,1’ Ç,2]’ the adjoint action on g, extends to g (8) g as a
derivation.

It turns out, e. g. [Ml, Section 4], that in the finite dimensional case
the notions of a coadjoint matched pair and of a Lie bialgebra coincide.

Vol. 53, n° 1-1990.



18 E. BEGGS AND S. MAJID

Thus (g, g*) are both Lie algebras and matched by the mutual coadjoint
actions iff g is a Lie bialgebra. The map 8 is equivalent to a Lie algebra
structure on g* via ( 03B403BE, ~1 (8) 112 &#x3E; = 03BE, [111’ ~2]&#x3E;. However, in the infi-
nite dimensional case these two algebraic notions diverge. The fundamental
reason for this is that a Lie algebra structure on g*, i. e. a suitable map
~*0~*-~* defines a dual map 8:~**-~*(x)~)*. Since
(g* O g*) * ~ g* * Cx~ g* * ~ g this may restrict to a map g - g Q9 g, but
does not necessarily do so. With suitable topologies the two notions can
again coincide. It will be convenient to formulate our constructions in
terms of matched pairs, rather than bialgebras.

In particular, we shall see below that the analogues of the heuristic
construction of Lie bialgebra structures on indicated in [Wit,
Appendix], lead in fact to natural examples of matched pairs of topological
Lie algebras based on diff(R) and diff(S1)c. The motivation for [Wit]
came from string theory, in connection with representations of the Virasoro
algebra. It is possible that some ideas in the present paper could be
generalized in this context to the Virasoro algebra, or further, to Gelfand-
Dickey algebras [Bak].

Given a matched pair of Lie algebras over R or C, it is natural to

attempt to exponentiate these to a matched pair of groups or semigroups.
This was done in the general finite dimensional case in [M2] and a physical
application given in [M3]. The exponentiation was also given independently
in [Lu W] with some of the steps also obtained in [KM, Section 4]. In the
final section of the paper, we consider how this exponentiation could be
carried out for matched pairs based on diff(S1) [rather than on 
which is not suitable for exponentiation to a Lie group]. We identify a
novel topological obstruction. From the physical point of view, it may be
possible to interpret such an exponentiation along the lines of [M3] as the
motion of a particle in configuration space given by an orbit in Diff(S1).
One may also consider here Segal’s partial complexification
of [Seg]. In addition, bicrossproduct groups in general are con-
nected with the Riemann-Hilbert problem and dressing transformations
in the context of classical integrable systems [Sem]. This connection was
the motivation of [Lu W] [KM] [AK] via the theory of Manin triples. A
final physical setting which may be relevant is [Yas]. Note that this

exponentiation problem is very different, both mathematically and physi-
cally, from the problem of "exponentiation" of a solution of the CYBE
equations to a solution of the Quantum Yang-Baxter Equations (QYBE).

Construction of Lie bialgebras : review of algebraic case

The strategy to obtain Lie bialgebras that will be used rests on work of
Drinfeld. For clarity we describe it here in its finite dimensional setting.

Annales de l’lnstitut Henri Poincaré - Physique théorique



19diff (Sl) BICROSSPRODUCTS

It is not used directly in the paper but motivates the definitions that will
be made in the infinite-dimensional examples of matched pairs. Let g be
a finite dimensional Lie algebra over R or C. Let co be a non-degenerate
2-cocycle on g. In the real case, this extends to a left-invariant simplectic
form on G the simply connected Lie group with Lie algebra g. Non-
degenerate means that when the two-cocycle co E g* (8) g* is viewed as a

map co: g -~* :!; H 6) (~ ), it is invertible (corresponding to the symplectic
form on G being non-degenerate). Let r = c~ -1. Then Drinfeld [Dri] showed
that r viewed as obeys the CYBE,

(Here r~03A3r(1)~ r(2) is the formal sum notation for elements of g ~ g and
i, j distinguish the two formal sums.) Indeed, non-degenerate (skew symme-
tric) solutions of the CYBE are precisely equivalent to non-degenerate
two-cocycles in this way. In the real case they correspond to Poisson
bracket structures on C~ (G). Next, Drinfeld showed [Dri] how to obtain
from this a Lie bialgebra structure on g. Namely, let 8 = dr where d is the
coboundary operator in the Lie algebra complex with values in g @ g
under the adjoint action. Explicitly,

The corresponding Lie algebra structure on g* is

where r (r~~ = r (~, ) and a is the coadjoint action of g on g* as above.
The coadjoint action of g* on g is then given by

The bracket on g can also be recovered in the form

and a can be recovered in the form a~ (11) 0 Øll (ç) + [03 (~), 11] so that
the construction is completely symmetric between g, g* and r, co.

Note that in forming the Lie bialgebra (g, r) it is not necessary that r
be non-degenerate or the inverse of a 2-cocycle co. For the above bracket
on g* to be skew symmetric it is only required that the self-adjoint part
of r be ad-invariant. (In our examples, however, r will arranged to be
skew adjoint.) In forming the coadjoint matched pair (g, g*, a, is
needed only in the form of this map r : ~* -~. Also, for the coadjoint
matched pair, it is not necessary to construct the map 8, which need not
exist in the infinite dimensional case. In the construction, the CYBE for r
is used in the form r ([r~ 1, rl 2]) _ [r (~ 1 ), r (~ 2)J to show that the above

Vol. 53, n° 1-1990.



20 E. BEGGS AND S. MAJID

bracket on g* manifestly obeys the Jacobi identity. It provides a useful
homomorphism g* - g.
The heuristic construction of Lie bialgebra structures on diff (S 1) describ-

ed in [Wit] proceeds by analogy with the above finite dimensional cons-
truction in the case when the 2-cocycle o is exact. Thus let (Ob be the two-
cocycle on a suitable Lie algebra g defined by an element bEg* as

In the present example, for the rb defined via ffib by b E g*, we obtain

and rb: g* - g an isomorphism.
The above constructions of Lie algebra matched pairs can be summariz-

ed in terms of Lie algebra cohomology. Thus (gl, g2, a, P) is a matched
pair of Lie groups if the actions a and obey

where a* and ~3* are the actions on g2 and gi respectively, obtained as
adjoints of (x and P. The coadjoint matched pairs that we shall be consider-
ing are all cohomologically trivial: and 03B2=-dr in the relevant
complexes (the minus signs here can be avoided
by working with right coadjoint actions, rather than the left coadjoint
actions). Moreover, the specific rob and rb = m;; that we shall be consider-
ing are also cohomologically trivial, rob = db in the usual Lie algebra
cohomology complex, and b E g*. This finite dimensional construction of
certain coadjoint matched pairs motivates the construction of the infinite
dimensional matched pairs of the present paper.
When (gl, g2, a, P) are a matched pair of Lie algebras, the bicrossproduct

Lie algebra on gl 1 EÐ g2 is defined by

As with Lie bialgebras, these are interesting even though the structure
maps are cohomologically trivial in the relevant complex. For example,
the bicrossproducts of such cohomologically trivial real coadjoint matched

pairs have a natural complex structure,

PROPOSITION 1. 1. - Let (gl, g2, a, (3) be the real coadjoint matched

pair defined by and (3 = - dr in the relevant complexes. Here 03C9

is a 2-cocycle and as maps, r=03C9-1. The linear map J = 0) 0 
:

g2 ~ g1 | | g2 makes g1 | | g2 naturally into a complex vector space (but
not a complex Lie algebra as the Lie bracket on g1 | | g2 need not respect J).
Moreover, there is a natural 2-cocycle on g1 | | g2 given as a map

Annales de l’lnstitut Henri Poincaré - Physique théorique
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-1 -r : gi lgl | |g2)*, and a natural solution of the CYBE on

gl given as a -W 1 : (gl P! g2)* ~ gl 1 PI g2. These are both

degenerate (and so not inverse to each other.)

Proof. - The proof follows by direct computation using the expressions
above. Note that g2 is built explicitly on g EB g* where gl = g, g2 = g*.
The complex structure J defines an action of (x + i y) E C as

x + J y (J2 = -1 ). g is finite dimensional and we identify g2)* with
g* EB g. The stated 2-cocycle and solution of the CYBE can then be directly
verified in this form. It should be mentioned that Drinfeld has also
observed a (different) solution of the CYBE on 0

2. MATCHED PAIRS WITH diffeR)

This section extends the construction of a coadjoint matched pair g, g*
defined by an element b E g*, to the infinite dimensional case g = diff (R).
More precisely, instead of working with gl = diff (R), we shall work with
smooth bounded vector fields on R. [Note that this is not all of the Lie
algebra of the usual Diff (R).] Instead of working with g2 the dual linear
space, we shall take the space of smooth quadratic differentials. The
example will be of coadjoint type.

DEFINITION 2. 1. - Let R be endowed with standard co-ordinates x E R

and co-ordinate basis a of the tangent bundle. Let g i be the topological
ax

Lie algebra of smooth bounded vector fields on R, which we identify with
C~bd (R) by the basis. This consists of real-valued smooth functions, bounded
in the seminorms

is abbreviated to . The Lie bracket on gl is explicitly
given by

and is jointly continuous.

Vol. 53, n° 1-1990.



22 E. BEGGS AND S. MAJID

That the Lie bracket shown on g 1 is indeed defined and jointly continu-
ous follows immediately from the following elementary lemma and formu-
lae of the form

LEMMA 2.2. - Let U, V, W be topological vector spaces with topology
determined by families of seminorms II A linear map cp : V - V is

continuous iff for each n, II cp (v) Iln can be bounded by finite linear combina-
tions of the II v (uniformly in V). A bilinear map p: U X V - W is jointly
continuous iff for each n, II cp (u, v) Iln can be bounded b y finite linear combina-
tions of II u v (uniformly in U X V).

DEFINITION 2.3. - Let g2 be the topological linear space of certain
smooth bounded quadratic differentials on R, identfied via basis dx Q dx
with a subset of Cbd (R). More precisely, let g2 = Cbd (R) n L~ (R). Th is
consists of smooth functions bounded in the seminorms

are abbreviated to ~~~ and 1111111 respectively.
There is a pairing between g 1 and g 2 defined by

This pairing is continuous Using this, we let
a denote the left coadjoint action of g 1 on gz. Explicitly, this is defined
by

This is because

To see the last equality, use integration by parts between the finite limits
- L and R. The boundary term is

Since the various integrands are in L1, the expression on the right tends
to a limit as Rand L tend to infinity. Hence 1 ~2] tends to a limit as

Annales de l’lnstitut Henri Poincaré - Physique théorique
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R -~ 00, and as q§1 ~2 is in L 1, that limit can only be zero. A similar
argument applies as L ---~ 00, so it is possible to use integration by parts
over all of R.

PROPOSITION 2 . 4. - Let g1 be the topological Lie algebra g1= C~bd (R)
defined in Definition 2 . 1 and g2 the topological linear space

g2 = C~ (R) (~ L (R) defined in Definition 2 . 3 . Then the map

is defined and is a jointly continuous action of gi on g2.

Proof - The are bounded bilinearly in the

and the II ~ IIm2 as in checking Definition 2 .1. For the additional
seminorms we have

and similarly for the higher II C’lç (11) II~. Hence by Lemma 2 . 2, the map a
is well defined and continuous. D

As explained in the finite dimensional case, the construction of a Lie
algebra structure on g2 and the action P of g2 on gl’ begins with a two-
cocycle rob on gi 1 viewed in the finite dimensional case as a map

It was defined by ~,~(~))=~[~i~2]). We use
an analogous definition.

DEFINITION 2.5. - Let b be a fixed every-where positive element of
Cba (R) bounded away from zero, and let (Ob be the linear map

PROPOSITION 2. 6. - Let gl be the topological Lie algebra, g2 the topo-
logical linear space and oc, rob the maps defined above. Then the map rob has
image containing g2 and a unique skew adjoint inverse rb g~ -~ gl. It is

given by

and is continuous. Here sgn (x) denotes :i: 1 according to the sign of x. Skew
adjoint means here that (~(Tli), T1~) = - (~(r~), 111 
Proof - The inverse of is the map T~t-~~(r~) where ~(r;) is the

solution r to the differential equation 2~+~r==rt. Since b is bounded
away from zero and smooth, this has a unique solution of the form

r (x) = 2014=: ( j~ A (11)) where A (11) is a constant. This is fixed~BJ-00~ /

Vol. 53, n° 1-1990.



24 E. BEGGS AND S. MAJID

by the requirement of skew adjointness in the form stated. Note that the
skew adjointness can be checked on 112 of compact support, which
are dense in g2 ; this extends to all of g2 by continuity of the pairing. The
result is

The integral kernel stated for r can also be found directly using the method
of Green’s functions. The integral kernel r~ (x/ = r (x, y) is the solution of
the distributional differential equation r§ + b’ r = 03B4y. Here ðy is the

2 b 
delta function distribution at y. This evidently has solutions r + = A + / Jf
for the two domains x(y and x)y. Here A - is arbitrary and

A + = A- + 1. Antisymmetry of the kernel then fixes
2 Jb @)

Note that although ker rob is nontrivial it is spanned by 03BE=1 b), this
degeneracy is fixed by the skew adjointness requirement. Also note that if
b, q are smooth then is also smooth. (To see this, if r is

continuous then r’ is continuous since r’ =2014201420142014. Similarly, all derivatives
2 b

to order k continuous implies /~~ continuous. We require for this that
b is smooth and bounded away from zero.) We now check that the map

r) p-~(~) is well defined and continuous. Firstly note,

and similarly for the higher derivatives. Hence by Lemma 2 . 2, rb is defined
and continuous. This completes the derivation of 0

PROPOSITION 2.7. - Let gl, g2, a and rb be as above. The resulting
bracket on g2,

makes g2 into a topological Lie algebra and the map

Annales de l’lnstitut Henri Poincaré - Physique théorique
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defines an action of g2 on gl. With these actions, (gl, g2) is a matched pair
of coadjoint type.

Proof. - It is straightforward to check that the integral kernel of rb
obeys the CYBE as it must by construction. Equivalently [Ml],
rb([111’ ~12)) _ [rb (~11), rb (~12)) where [r~ 1, r~2) is the Lie bracket on g2 in
the form stated. This is immediate given that rb and a are well defined
and continuous for gl, g2 as stated. Also, the stated form of P is well
defined and an action. As in the algebraic case cf [M l , Lemma 4.3], these
facts are enough to ensure that a and P are matched. D

Example 2. 8. - Let b = 1 . 2 Then (1;) = ’ and

The Lie bracket on g2 and its action 03B2 then take the form

3. MATCHED PAIRS WITH diff (S)c

In this and the next section we shall consider matched pairs based on
rather than vector fields on R as in the last section. The construc-

tion will follow the same strategy. Given a function b : S 1 -~ R we shall
construct a map rb obeying the CYBE, as the solution of a differential
equation on S~ (cf. proof of Proposition 2 . 6). If b has no zeros on SB
the differential equation has non-singular coefficients and it is easy to
show cf. [Wit, Section 3] that there are no solutions. In order to make
sense of differential equations with singular coefficients we embed S~ in C
and use the theory of complex analytic continuation.

DEFINITION 3 .1. - Let the unit circle in the complex plane
with an g ular co-ordinate 6 co-ordinate basis of the t angent bundle.

Let g denote the space of real-analytic vector fields on S 1, which we iden ti, f ’y
with real-analytic functions: basis. By definition, f : 
is real-analytic (or analytically extendible) f there exists such
that f extends to an analytic function f: Aa~C. Here A is the annulus

Vol. 53, n° 1-1990.



26 E. BEGGS AND S. MAJID

Let ga denote the space of analytic functions Aa  C that are real on
S1, endowed with the compact open topology. We give g the direct limit
topology, g = lim ga.

a - 1

By the Stone-Weierstrass theorem, such real-analytic functions are dense
in the continuous real functions on the circle with the compact open
topology. Thus it is reasonable to work with this topological vector
space g in place of diff (S~), with a corresponding Lie algebra structure.
Eventually, b will also be taken an element of this space. We shall return
in the next section to the problem of constructing a matched pair on the
topological vector spaces Lie algebra structure on
gl and a Lie algebra structure on g2 determined by rb. (We will find an
obstruction.)

In the present section we consider the easier case ga of functions analytic
on an annulus of radii (I, a), and without any reality condition. For
suitable b we shall obtain a matched pair on the topological vector spaces
g 1 = g 2 = g + as the direct limit of matched pairs on the topological vector
spaces ~1=~2~~- This direct limit g+ plays the role in our framework
of Thus,

DEFINITION 3. 2. - Let ga denote the space of complex valued analytic
vector fields in the annulus A:, endowed with the compact open topology.
Here A: denotes the open and a &#x3E; 1. Let

g+ = lim ga with the direct limit topology.
a - i

We define a Lie algebra structure in the ga and the ga by extending the

usual diff(S1) Lie bracket, [03BE1, 03BE2]=03BE1d03BE2-03BE2d03BE1, to the complex case
de de

as

Note at 
d0 dz

To proceed along the lines of Section 2, we want to solve the differential

equation 2~2014+r2014=n extended to an annulus A~. The extension to an~ 
de de

equation in z~C is

We assume that b is analytic in the annulus A: and has no zeros there.

Annales de l’Institut Henri Poincaré - Physique théorique
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PROPOSITION 3 . 3. - Let b be analytic on A: and without zeros there. If
b has odd winding number then the map Yb (11): ga giving the
solution to the equation 2 brb + rb b’ - - v ~, exists and is continuous. It is

z

given by

where y is a curve in A: from z to itself with winding number I .

Proo, f : - Using an integrating factor of 1 /~, equation (1) can be
written as

However, Jb may not be defined on the annulus, so for this to make
sense we consider the equation in the double cover of the annulus,
A~ (8 E [0, 4 ~c)) . Given a starting point wo in the double cover, we can
define a solution to the differential equation by

where y is a curve in the double cover from w~ to w. But r is required to
be a function on the original annulus, so it must have period 2 x. That is,
if wi and y is a curve with winding number I in the original
annulus from w~ to WI’ then

There are two cases to deal with. Firstly, if /(wo), the only
possibility of a solution is if the integral vanishes, which will only be true
for certain rl, and if this condition is satisfied there will be an infinite
number of solutions. Secondly, if there is a unique
solution for all r), namely

If b has no zeros in the open annulus A~, then this formula gives a unique
single valued solution r to the differential equation in A~, and we can
consider y to be a curve in A~ from w~ to itself with winding number l.
The condition that merely says that b has odd wind-
ing number about t e annulus. Also note that if we consider the points

Vol. 53, n° 1-1990.



28 E. BEGGS AND S. MAJID

WI lying in a compact subset K of A:, then we can choose the correspond-
ing y to lie in the compact set S~ K. Thus uniform convergence of the
function 11 on the compact set S 1 K implies uniform convergence of r on
the compact set K. Therefore the map rb: ~~ r is continuous. D

This result can now be combined along the lines of Section 2 to prove
the following:

PROPOSITION 3.4. - Suppose that b is analytic on the annulus A: and
without zeros there, and that b has odd winding number. Let gl = g2 = ga as
topological vector spaces. Then there are jointly continuous Lie algebra
brackets in gl and g2 defined respectively by

forming a matched pair of topological Lie algebras g2, oc, ~3). Here rb is
given in Proposition 3. 3 and the actions are given by

If b extends to a real valued function on S 1, the winding number
condition in the last result can be reformulated using the following well-
known reflection principle:

LEMMA 3 . 5 (The Reflection Principle). - If f : C is analytic, and
if f extends continuously to a function on ~ z E C : I z E [1, a) ~ (except
perhaps for some finite set) which is real on S 1, then f can be extended
to be analytic on the open annulus Aa (with perhaps finitely many isolated
singularities on S1).

Outline of Proof - Define f (z) for 1) by z 1 z . Then

the two definitions off agree on S1 by the reality condition (except at the
finitely many points). If the set of such f were given the compact open
topology on the semi-closed annulus {z E C : z I E [ 1, a) ~ (except at the

finitely many points), then the resulting extension would have the compact

open topology on the open annulus {ZEC: a (except at the

finitely many points). 0

LEMMA 3 6. - If f : S1 ~ R extends to an analytic function in some

complex neighbourhood of S 1, then the winding number of f is one half of
the number of zeros of f on the circle (counted multiply).

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Proof - Suppose that f extends analytically to the open annulus

{z~C : |z|~(1 a,a)}, and that / has no zeros off the unit circle in the
annulus (use the principle of isolated zeros). Choose a radius c between 1

and a, and count the number of times that the curve e - f winds

about the origin. By the reflection principle, ./)-? )=f(ce03B8), so the

curve 03B8~f(1 ce03B8) winds the opposite way about the origin. Thus we
have the equation

2 x winding no. (/ = winding no. (/ |c) - winding no. (f|1 c) =03B3f’ fdz

where y is a path anticlockwise at radius c and clockwise at radius 1/c.
The result follows by Cauchy’s theorem. D

The principle of isolated zeros now leads to the following proposition.

PROPOSITION 3 . 7. - Suppose that b is a 
Then there exists an a&#x3E; I such that b is analytic on the annulus A~ and
real on the circle, with no zeros on The winding number of b is one

number of zeros of b on the circle (counted multiply). If this is odd,
then Proposition 3.4 applies and g 2’ ~~ matched pair built on
the topological spaces g 2 = 
We now turn to the refinement of the above matched pairs, correspond-

ing to As explained above, we consider not a fixed g~, but the
direct limit g+ . This can be defined formally as the disjoint union of the
~ for all ~&#x3E;1, quotiented by the equivalence relation defined by agree-
ment on the common domain of definition. Thus a set U is open in g+ if
and only if U is open in ~ for all a &#x3E; L One interesting fact about
g+ is that it is self dual, as we shall now show:

PROPOSITION 3 . 8. - The topological vector space g+ is self dual under
the pairing

where C = C (/,/!)&#x3E; 1 is a number such that both f and h are defined on A:
for some a &#x3E; c. That is, the map g + ~ g +’ : f H ~ , f; ~ given by the pairing
is a 1-1 correspondence.

Proof. - By definition of the topology on g+, to show that the pairing
( , ) is continuous we only have to show that it is continuous on

ga for all a &#x3E; 1. This is automatic, since for any c in the interval
a &#x3E; c &#x3E; 1, cSl is a compact subset ofA~. To show that the 
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corresponding to the paring is 1-1, be a basis of

g + . Then

where fn is the nth Laurent coefficient of f.
To show that this map g+ ~ g+’ is onto, take a continuous map

T : g + ~ C, and define a function h as the function whose Laurent expan-
sion is

We wish to show that the series for h converges in some annulus A~ , and
thus show that T= (/x, ). Now T : gi - C is continuous, so there is some
compact set K c A; such that

Choose c&#x3E; 1 sufficiently small such that Ac+ n K is empty. Then for
c-n. Thus the sum of positive coefficients of h converges

uniformly on compact subsets of A~ . Also for any a &#x3E; 1, T : is

continuous, so there is some compact set Ka c A: such that

But if n  0, then Const. an, so the sum of negative coefficients of h
converges uniformly on compact subsets of for all ~&#x3E;1, and thus
uniformly on compact subsets of I z &#x3E; 1. D

PROPOSITION 3 . 9. - Let gl =g2=g+ as topological vector spaces. Let b
be a real-analytic function R such that one haf the number of zeros
on S1 (counted multiply) is odd. Then the topological vector spaces

g = g2 = g+ with the Lie algebra structures and actions defined as the direct
limit of those of Propositions 3 4 and 3. 7, form a coadjoint matched pair.

Proof. - Continuity of the Lie bracket structures gl and g2 on and

of the maps (Ob and rb were checked in obtaining Proposition 3.4. The
direct limit topology is such that this extends to continuity on g+ . Thus
(gl, B) is a matched pair. That this matched pair is coadjoint (i. e.

g2 = g 1 as a topological vector space and a, ~3 are the coadjoint actions)
follows from Proposition 3 . 8. Note that in Proposition 3 . 8, if f, h in fact
extend to functions on SB we can take c=1 and the pairing shown reduces
to the usual bilinear pairing of functions on S~ analogous to the L2 pairing
used in Section 2. D
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4. TOPOLOGICAL OBSTRUCTION TO CASE OF REAL 

In this section we shall attempt to find matched pairs built on the

topological vector spaces g 1 = g z = g where g is the space of real-analytic
functions on the circle. This space plays the role in our formulation of

It was defined in Definition 3.1 as the direct limit for a &#x3E; 1 of

ga, the analytic functions on the annulus Aa that are real on the circle.
The topology is given via the compact open topology on each ga. We
would like to give a version in this real case of the results for the

complexified case treated in the last section. That is, we would like to
show that if gl = g2 = g as topological vector spaces, then the definitions
of Lie algebra structures on gl and g2 and of the actions a and p along
the lines of Proposition 3.4, give a matched pair. To do this we must
show that rb maps g2 into gl. It is not very difficult to see that the formula
for rb in Proposition 3.3 extends to continuous functions on the annulus

(excepting the zeros of b on However it is not

obvious whether the reality condition on S~ 1 is preserved. In fact we shall
see that the reality condition cannot be preserved because of the condition
on b that it has odd winding number.

Recall that the function rb was invented to be an inverse to the differen-
tial operator rob: g - g defined by co~(~)=2~~+~~. We found above
that rb really only makes sense if b has an odd winding number, and so
in particular only if b has zeros by Proposition 3. 7. Now rob is 1-1 since

rb (~)) = ~ but is it onto? It is obviously not onto if b has a zero of
order &#x3E;_ 2 at some point zo E SI, since then rob (ç) (zo) = 0 for all ç. If b has
only order 1 zeros then rob is also not onto, but the proof will be rather
more difficult.

PROPOSITION 4 . 1. - Let (j0~:~-~~:~~-~2~~+~~ and let rb be defined
as in Proposition 3 . 3. Then image (rob) = {11 E g : 

Proof. - If q e g is such that then But rb
is 1-1, so rt = rob rb (11). Conversely, if 11 = rob D, then rb (ç)
==~. 0

PROPOSITION 4 . 2. - If b has odd winding number, then image is a

finite codimension subs pace of g.

Proof - If rb (11) E g, then two conditions must be satisfied:
(1) is real on S~, except at the zeros of b. This means that rb (~)

can be extended to some annulus Aa except for the zeros of b.
(2) The singularities of rb (11) at the zeros of b are removable.
First we show that condition ( 1 ) is satisfied on a finite codimension

subspace. Pick points wl, ..., w~ between the n zeros of b on S~, and
define C : g ~ Rn by Ck (11) = x (rb (11) (w~)). Here x denotes imaginary part.
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Now if (wk) is real, then equation (1) implies that is real
for all w which can be connected to wk by a path on S~ not including the
zeros of b. Thus if and only if rb (11) is real on the complement
of the zeros of b in S~.
Under the assumption that C(~)==0, we can use the reflection principle

to extend rb (11) to an analytic function on A~ except for the zeros of b.
The condition that these singularities are removable is precisely that the
negative index Laurent coefficients in the expansion about the zeros

zl, ..., z~ of b vanish, i. e. that

where y~ is a small contour in Aa enclosing z~. These integrands are
continuous functions of 11, and the finite codimension result will follow if
we can show that there is a maximum m (depending only on b) for which
the above integrands can be non-zero. Now rb (11) (w) was found in the
previous section. It is the solution stated in Proposition 3 . 3 where y is a
contour from w to itself with winding number 1. Choose a zero z~ of b
on SB and a radius C E (1, a). For w near z~ we know that

for some s depending on the order of the zero of b at z~. Let y be the
following curve: Move radially from w to the radius c circle, then around
the circle anticlockwise, and then radially back to w. Thus we find a
bound for rb (11) (w), for w near zk :

This shows that the order of the singularity of rb (11) at z~ is bounded in
terms of the order of the zero of b there, and completes the proof. 0

PROPOSITION 4. 3. - If b has odd winding number, then there is ~ E g
such that rb (~) ~ g.
Proof - If b has a zero of order &#x3E;- 2, then the result follows since we

already know that rob is not onto. Now suppose that all the orders of the
zeros of bare 1. We know that there must be at least two such zeros. In
this case the function
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is integrable on Sl, and the dominated convergence theorem shows that

for w~S1 1 and 03B3w a path on S1 from w to itself with winding number 1.

Now the function

varies continuously with But blows up at a zero of b, so
if rb (11) (w) is in g, then the integral

for y the path from a zero of b to itself. Since g is dense in the continuous
functions, this cannot be true for all 11. D

There results show that the constructions of this paper do not go
through to obtain a matched pair built on the topological vector spaces

Because is not onto, and rb does not map g into g,
g2 must be made smaller and/or gl must be made larger to obtain a map
~~2 ~~i inverting Wb. Unfortunately, there do not appear to be suitable
choices for either of these that are closed under the relevant Lie brackets
and for which a and ~3 are defined.

In this section we have identified an obstruction to constructing a
matched pair with real along the lines of the complexified case
given in Section 3. If this can be overcome, one would hope to exponentiate
to a matched pair based on Note that the complex case of
Section 3, diff (S 1 )c, is not the Lie algebra of any Lie group, so could not
form the basis of an exponentiation to a matched pair of Lie groups. It

may be however, that a matched pair could be obtained along the lines
above with Segal’s partial complexification of Diff (S~). This
would be interesting in the context described in the introduction.
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