Riesz means of bounded states and semi-classical limit connected with a Lieb-Thirring conjecture. II
Annales de l'I.H.P. Physique théorique, Tome 53 (1990) no. 2, pp. 139-147.
@article{AIHPA_1990__53_2_139_0,
     author = {Helffer, B. and Robert, D.},
     title = {Riesz means of bounded states and semi-classical limit connected with a {Lieb-Thirring} conjecture. {II}},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {139--147},
     publisher = {Gauthier-Villars},
     volume = {53},
     number = {2},
     year = {1990},
     mrnumber = {1079775},
     zbl = {0728.35078},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1990__53_2_139_0/}
}
TY  - JOUR
AU  - Helffer, B.
AU  - Robert, D.
TI  - Riesz means of bounded states and semi-classical limit connected with a Lieb-Thirring conjecture. II
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1990
SP  - 139
EP  - 147
VL  - 53
IS  - 2
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1990__53_2_139_0/
LA  - en
ID  - AIHPA_1990__53_2_139_0
ER  - 
%0 Journal Article
%A Helffer, B.
%A Robert, D.
%T Riesz means of bounded states and semi-classical limit connected with a Lieb-Thirring conjecture. II
%J Annales de l'I.H.P. Physique théorique
%D 1990
%P 139-147
%V 53
%N 2
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1990__53_2_139_0/
%G en
%F AIHPA_1990__53_2_139_0
Helffer, B.; Robert, D. Riesz means of bounded states and semi-classical limit connected with a Lieb-Thirring conjecture. II. Annales de l'I.H.P. Physique théorique, Tome 53 (1990) no. 2, pp. 139-147. http://archive.numdam.org/item/AIHPA_1990__53_2_139_0/

[AI-LI] M. Aizenmann and E. Lieb, On semi-Classical Bounds for Eigenvalues of Schrödinger Operators, Phys. Lett., Vol. 66A, 1978, pp. 427-429. | MR

[DI] J. Dieudonné, Calcul infinitésimal, Hermann, 1980. | MR | Zbl

[HE-RO] B. Helffer and D. Robert, Calcul fonctionnel par la transformée de Mellin et applications, J.F.A., Vol. 53, n° 3, Oct. 1983.

[HE-RO]2 Riesz Means of Bound States and Semi Classical Limit Connected with a Lieb-Thirring's Conjecture-I, J. Asymp. Anal. (to appear). | Zbl

[HE-SJ] B. Helffer and J. Sjöstrand, Diamagnetism and de Haas-van Alphen Effect, Ann. Inst. Henri Poincaré, Vol. 52, n° 4, 1990, pp. 303-375. | Numdam | MR | Zbl

[HO] L. Hörmander, On the Riesz Means of Spectral Functions and Eigenfunction Expansions for Elliptic Differential Operators, Yeshiva University Conference, Nov. 1966.

[LA] L.D. Landau, Diamagnetismus der Metalle, Z. Phys., Vol. 64, 1930, p. 629. | JFM

[LI]1 E.H. Lieb, The Number of Bound States of One-body Schrödinger Operators and the Weyl Problem, A.M.S. Proc. Symp. Pure Math., Vol. 36, 1980, pp.241-251. | MR | Zbl

[LI]2 E.H. Lieb, Bounds on Schrödinger Operators and Generalized Sobolev Type Inequalities, Séminaire E.D.P., École Polytechnique, 1985-1986. | Numdam | MR | Zbl

[LI-TH] E.H. Lieb and W.E. Thirring, Inequalities for the Moments of the Eigenvalues of the Schrödinger Equation and Their Relation to Sobolev Inequalities, Studies in Mathematical Physics, E. LIEB, B. SIMON and A. WIGHTMAN Eds., Princeton University Press, 1976.

[PE] R. Peierls, Zur Theory des Diamagnetismus von Leitungelectronen Z. Phys., Vol. 80, 1983, pp.763-791. | JFM | Zbl

[SO-WI] E.H. Sondheimer and A.H. Wilson, The Diamagnetism of Free Electrons, Proc. R. Soc., Vol. A210, 1951, p. 173. | Zbl