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ABSTRACT. - Scattering phases are defined in terms of the asymptotics
of solutions of the Schrodinger equation behaving as standing waves at
infinity. The scattering phases are connected in a simple way with the
eigenvalues of the unitary operator X = Sf where S is the scattering matrix
and f is the reflection operator. The eigenvalues of 03A3 can accumulate
only at the points 1 and -1. It is shown that the leading terms of their
asymptotics are determined only by the asymptotics of the even part of
the potential at infinity. Explicit expressions for these terms are obtained.

RESUME. - Des phases de diffusion sont définies en termes de l’asympto-
tique des solutions de l’équation de Schrodinger qui se comportent comme
des ondes stationnaires à l’infini. Les phases de diffusion sont liées d’une
manière simple aux valeurs propres de l’opérateur unitaire 03A3 = Sf où S
est la matrice de diffusion et fest l’opérateur de reflexion. Les valeurs
propres de E peuvent s’accumuler seulement aux points 1 et -1. On
montre que les termes principaux de leur comportement asymptotique sont
determines seulement par l’asymptotique de la partie paire du potentiel à
l’infini. Des expressions explicites pour ces termes sont obtenues.
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284 D. R. YAFAEV

1. INTRODUCTION

Under the assumption

one can construct solutions of the Schrödinger equation

whose asymptotic behaviour is that of a standing wave

as I x - 00. Such solutions are usually studied for spherically symmetric
potentials q (x) = q (r), when the variables r and ro can be separated in
( 1. 2). In this case a solution of the equation ( 1. 2) with the asymptotics
( 1 . 3) exists if is a scattering phase (or a phase shift) corre-
sponding to an orbital quantum number 1= 0, 1, 2, ... , and v = VI is a

spherical function. By analogy with the spherically symmetric case we
shall call scattering phases those numbers a for which solutions of the
equation (1.2) with the asymptotics (1.3) exist. Note that phases are
defined up to a summand n x where n is an integer.
The scattering phases a and the corresponding functions v can be

described in terms of the scattering matrix S (À) (for a precise definition
see section 3) of the Schrodinger equation (1 . 2). We recall that S (À) is a
unitary operator in the space and that S (X) - I is compact,
where I is the identity operator. Let .1’, defined by (.I’ f) (D)==/(-(D), be
the reflection operator in H. The is also a unitary
operator so that its spectrum consists of eigenvalues lying on the unit
circle T and accumulating only at the points 1 and -1. It can be shown

that a solution of the equation ( 1. 2) with the asymptotics ( 1. 3) exists if
and only if ;LL==exp(20142~9) is an eigenvalue of the operator £ (À) and v is
its eigenvector, i. e. S (X) v = Jl v. Without going into details, we note that
the asymptotics (1.3) should be understood in a natural averaged sense.
On the other hand, we require that the relation ( 1. 3) holds also for the
first derivative with respect to r. This distinguishes a unique solution of
the equation (1.2). Moreover, an expansion theorem in the space
Yf = L2 (Rd) in terms of functions satisfying (1.2), (1. 3) can be established.
This theorem is similar in nature to the usual expansion (see e. g. [1], [2])
in a generalized Fourier integral. Such an expansion relies on those

solutions of the equation ( 1. 2) which behave asymptotically as plane
waves at infinity. We emphasize that the expansion in standing waves is
valid for arbitrary P &#x3E; 1 whereas the expansion in plane waves requires
that 2 P&#x3E;J+ 1. Proofs of these results will be published elsewhere.
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285ASYMPTOTICS OF SCATTERING PHASES

In the present paper we study eigenvalues of the operator S (À) = S (À) J.
More precisely, the convergence of eigenvalues to the points 1 and - 1 is

investigated. Our main result (Theorem 4.2) is the evaluation of the

leading term of their asymptotics. This problem is similar to the corre-
sponding one for the scattering matrix S (À) itself [3], [4]. We recall that
in [3], [4] potentials decaying at infinity as homogeneous functions of a
negative order - [3  -1 were considered. The explicit expression for the
asymptotics of eigenvalues of S (À) was derived in terms of the asymptotics
of the potential at infinity.
The evaluation of the asymptotics of the scattering phases follows the

scheme of [3], [4] but requires some new technical tools. First of all, we
verify that it is sufficient to consider only the first Born approximation
(the first term of the perturbation theory) to the scattering matrix. At this
step the usual limiting absorption principle plays a crucial role. Further,
due to the operator J the problem is restricted to the subspaces of even
and odd functions. Here we make use of the abstract Theorem 2.4
where a perturbation of an isolated eigenvalue of infinite multiplicity is

investigated. We apply this Theorem to perturbations of the operator J
which has eigenvalues 1 and -1 with the corresponding eigenfunctions
being even and odd. Finally, we reduce the problem to the study of an
operator constructed explicitly in terms of the even part qe (x) of the
potential q (x). To this operator we apply results of [5] about the asympto-
tics of eigenvalues of pseudodifferential operator of negative order acting
in the space H. Thus the asymptotics of eigenvalues of 03A3 (À) is evaluated
in terms of the asymptotics of the function qe (x) at infinity. As to the
potential itself it is sufficient to assume the bound ( 1.1 ) with some
[i &#x3E; (oc + 1 )/2. This shows that the odd part of the potential can decay
slower than qe (x) and still not contribute to the asymptotics of the
scattering phases.
The paper is organized as follows. Necessary information from abstract

operator theory is collected in section 2. Scattering theory and pseudodif-
ferential operators are discussed in section 3. Bounds and asymptotics of
scattering phases are obtained in section 4.

2. PERTURBATION OF AN ISOLATED EIGENVALUE OF
INFINITE MULTIPLICITY

1. We start with some well-known facts about compact operators. Their
detailed presentation can be found e. g. in [6]. Let H1, H2 be separable
Hilbert spaces and be the class of compact operators
K: H1 --~ H2. For a self-adjoint operator we denote by

Vol. 53, n° 3-1990.
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~ (K) (A)] its subsequent positive (negative) eigenvalues enumer-
ated with their multiplicities. For an arbitrary compact operator K its
singular (or simply s-) numbers are defined by the relation

Sn (K) _ ~n «K * K) 1 ~2) ~
Clearly, for any bounded operator A

The singular numbers of a sum and of a product of compact operators
satisfy the estimates

It is convenient to introduce classes !£p of compact operators K with s-
numbers obeying a bound p&#x3E;O. In other words, if

the functional

is finite. It follows from (2.2) that the classes !£ p are linear. In fact, the
functional (2.4) satisfies the triangle ineaquality

Moreover, it is quasi-homogeneous

The closure of the finite-dimensional operators in "quasi-norm" (2.4) is

denoted by J~. It consists of all compact operators K whose s-numbers
obey a bound sn(K)=o(n-P). When pl the quasi-norm (2 . 4) is equiva-
lent to the norm

The following assertion is frequently used when the asymptotics of a
sum of compact operators is investigated. Note that whenever a relation
contains the signs "±’B it is understood as two separate relations.

then
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287ASYMPTOTICS OF SCATTERING PHASES

2. We were not able to find the proof of the following elementary
assertion in the literature *.

where C depends only on f and p.

Proof - First we reduce the problem to the unitary case. In fact, let

be the Cayley transforms of the operators A, B. Since

the operator (or if (or ~). Define now a
function p on the unit circle T by the equality p = f (~,) where Jl = (~ 2014 i)
(~, + i) -1. Then and (p (W) =/(B). Thus it is sufficient to prove
that

and

Clearly, cp E Coo (T) if f E C~ (R). In particular, the coefficients of its

expansion in the Fourier series

are rapidly decreasing. In terms of this expansion

Let us show that wn - Un E .2 p and

Since

the triangle inequality (2 . 5) and the unitary of U, W ensure that

* It can be deduced from general results of [9] about double operator integrals.

Vol. 53, n° 3-1990.
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Now for n&#x3E;0 we obtain (2.11) by induction. Going over to adjoint
operators we extend (2 .11 ) to ~0.

Similar arguments show that

if W - U E 2~. Actually, let U’ = + R~m~, j = 1, ..., n, where are

finite-dimensional and  = o ( 1 ) as m ~ ~. Then according to (2 .12)

The first term in the RHS is again finite-dimensional and the second one
tends to zero in as m- Therefore if
W - U and Wn - Un E J~. By induction this ensures (2 .13).
Now we are able to estimate the sum (2.10). By (2.5) and (2.6)

In virtue of (2.11) it gives the bound

Since for cp E (T) the series in the RHS of (2 .14) is convergent, we
arrive at (2. 8) and (2.9). This concludes the proof.
Remark 2 . 3. - The convergence of the series in (2 .14) is sufficient for

the validity of (2. 8), (2.9). By the Holder inequality one can rewrite this
condition in a simpler form

Thus for smaller p the relations (2. 8), (2. 9) hold true under less stringent
assumptions on p. When p  1, using the norm (2.7) instead of the

functional (2 . 4), one can obtain the estimate

where C is independent of p.
3. Now we prove a simple but general result about the asymptotics of

eigenvalues arising by perturbation of an isolated eigenvalue of infinite
multiplicity. We shall consider this problem in an abstract framework. Let
A be some bounded self-adjoint operator in a Hilbert space H. Assume
that A is an isolated eigenvalue of A of infinite multiplicity so that (A, A + E]

Annales de l’lnstitut Henri Poincaré - Physique théorique
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and [~ 2014 E, Â) are gaps in the spectrum of A if E is small enough. By Weyl’s
theorem, for any compact operator K = K* the essential spectra of the
operators A and B = A + K coincide. This implies that the spectrum of B
in (X, X + E] and [Â - E, Â) consists of eigenvalues. They have finite multipli-
cities and may accumulate only at the point ~. Denote by and the

eigenvalues of the operator B lying in (~,, ~, + 8] and [~ 2014 8, ~,) and enumer-
ated with their multiplicities so that X  ~+1 ~ ~ p~+ ~ 1  À.

Let P be an orthogonal projection onto the space of eigenvectors of A
corresponding to the eigenvalue À. It turns out that under rather weak

assumptions on the operator K itself the asymptotics of the eigenvalues
p are determined by the operator PKP alone.

Proof - By translation one can always assume that ~==0. Let

6(~)=1 for sufficiently small I and 9(~)=0 for ~~8.
Here s is chosen in such a way that (0,s] and [- E, 0) are gaps in the
spectrum of A. The function j(À) _ ~, 82 (À) equals X in some neighbour-
hood of the point ~, = 0 and = 0 for I &#x3E;_ E. Note that in the support
of f the point X = 0 is the only point of accumulation of eigenvalues of
the operator B. Therefore j(B) E and up to a change of numeration
by some finite number

Now we take into account that P = 8 (A) and A 6 (A) == 0 by the construc-
tion of 8 and use the obvious identity

Since sn (B - A) = o (n - p/2), Lemma 2. 2 ensures that

So by estimates (2 . 1 ) - (2 . 3) the RHS of (2 . 18) is o (n-P) as n - oo . Thus

In virtue of (2. 15), Proposition 2. 1 shows that

To conclude the proof of (2. 16) it suffices to take the equality (2 . 17) into
account..

Vol. 53, n° 3-1990.
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The bound for can be obtained more simply.

Proof. - We assume again that ~, = 0 and use identity (2 .18). Since
Lemma 2 . 2 ensures that So by estimates

(2 .1) - (2 . 3) the RHS of (2 . 18) belongs to 2 p. Recall now that PKPe 2 p.
It follows that f(B) E 5£ p and therefore 1= 0 (n - P) by (2 . 1 7).

3. BASIC AUXILIARY FACTS

1. We give now a precise definition of the scattering matrix S(~).
Denote by V multiplication by a function q satisfying (1.1). Let Ho= -A
and H = Ho + V be self-adjoint operators in the Hilbert space ~ = L2 (Rd).
It is well-known (see e. g. [1], [2]) that the wave operators

exist and are complete, that is, their ranges coincide with the absolutely
continuous subspace Yf(a) of the operator H. Moreover,

= E ((0, oo )) Jf, where E (~) is the spectral projection of H correspond-
ing to a set gr c R. Since the scattering operator
s = W * W_ commutes with Ho and is unitary.
Let/be the Fourier transform of a functionjEL2(Rd), i. e.

and let

be (up to the numerical factor) the restriction of / onto the sphere of
radius Â 1/2. Clearly, an operator F defined by the relation (F f ) (Â) = ro 
maps Yf unitarily onto the space ~ = L2 (R +; H) of vector-functions on
R+ with values in the space H = L2 (Sd-1). Since FRo F* acts as multiplica-
tion by the independent variable the operator F s F* acts as multiplica-
tion by the unitary operator-function S (X) : H - H called the scattering
matrix.
To describe a stationary representation for S (Â) we need some analytical

facts. Let Xy be multiplication by the function (1 + x2) -’’~2 . Then for y &#x3E; 1 /2
the operator

Annales de I’Institut Henri Poincaré - Physique théorique
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is compact and depends continuously on the parameter ~ &#x3E; 0. This is a
direct consequence of Sobolev’s trace theorem. Sharp estimates on s-

numbers of Z~ are established in Corollary 3.3 below. By
and sz ~ 0, we denote the resolvents

of operators Ho and H. The following assertion (see e. g. the original
papers [7], [8] or monographs [1], [2]) is called the limiting absorption
principle.

PROPOSITION 3 . 1. - Let ( 1 .1 ) be ful f ’illed and y &#x3E; 1 /2. Then the operator

is continuous in norm with respect to the spectral parameter z in the complex
plane cut along [0, possibly with exception of the point z= 0.

The stationary representation for the scattering matrix has the form

The justification of this formula can be found, for example, in [7]. To be
quite precise one should rewrite (3.2) in terms of the operators Zo and

where 1/’ is multiplication by the bounded function c~ (x) (1 + X2)JJ/2. Then
(3 . 2) takes the form

The RHS of (3. 3) is a combination of bounded operators and thus it is
well defined. It follows from (3 . 3) that S (A) depends continuously on A
and that S (~) -1 is compact.
One can take formulas (3. 2) or (3 . 3) as the definition of the scattering

matrix. The unitarity of S (A) can be easily deduced from this representa-
tion. To this end one should use the resolvent identity connecting R (z)
with Ro (z) and the relation

In its turn, the last equality is a consequence of the relation between the
boundary values of a Cauchy integral and its density.

2. We need some information about the spectrum of the operator
To = To (À) = r 0 (À) V rÓ (À), which is called the first Born approximation
to the scattering matrix. Actually, we shall consider a slightly more general
operator Y1 where Y~ is multiplication by the characteristic function
of some set Denote by A~ the plane orthogonal to co and
passing through the origin in We assume that in case d &#x3E; 2 the sphere

is endowed with the usual (d- 2)-surface measure. In

Vol. 53, n° 3-1990.



292 D. R. YAFAEV

case d= 2 the set Sw- 2 consists of two points (corresponding to unit vectors
orthogonal to o) both of which have measure 1.

PROPOSITION 3 . 2. - Let a function q (x) have the asymptotic form

at infinity. Set

and

Then

The detailed proof of this assertion can be found in [3]. Its basic steps
are the following. First, we consider the case when q is a smooth function
which equals outside of some neighbourhood of the origin.
Then, according to (3 .1), To is an integral operator in H with kernel

This function has a singularity on the diagonal (0 = (0’ which determines
the asymptotics of the spectrum of the operator YT 0 Y. However, it is

more convenient to treat To as a pseudodifferential operator of negative
order 1 2014a on the sphere Essentially, its symbol has the form

More precisely, can be split into a finite number of pieces in such a
way that on each piece the problem is reduced to the consideration of a
pseudodifferential operator in Euclidean space of dimension We can

apply Weyl’s formula (proved in this situation in [5]) for asymptotics of
eigenvalues of operators YT 0 Y. This ensures the asymptotics (3 . 8) for
our special choice of q. In the particular case this reuslt shows

Annales de l’lustitut Henri Poincaré - Physique théorique
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that the term o I-a) in (3 . 4) does not contribute to the asymptotics of
the eigenvalues. Thus we can extend (3 . 8) to arbitrary bounded q satisfying
(3 . 4). The expression (3 . 7) for a + can be obtained if the homogeneity
of the function is taken into account. The estimate (3. 9) is
established as a by-product of these considerations.

Z~ (À) = ho (À) X~: Yf -+ H is compact and

Proof. - Let us apply Proposition 3 . 2 in case q (x) _ ( 1 + x2~ -’’, Y = I.
Then it follows from (3 . 8) that

4. MAIN .THEOREM

1. Here we shall consider the asymptotics of the spectrum of the unitary
operator E (À) = S (À) J in the space H. We recall that the precise definition
of the scattering matrix S (À) is given by the relation (3.3) and

(00) = f ( - Proposition 3 .1 and Corollary 3 . 3 ensure that S (~,) - I
is compact so that

In the following the dependence of different objects on À is often omitted.
The spectrum of ~ consists of the eigenvalues 1 and -1 with corresponding
eigenfunctions being even and odd. We denote by

the orthogonal projections in H onto the subspaces H+ and H_ of even
and odd functions.

By Weyl’s theorem two unitary operators with compact difference have
the same essential spectra. Thus the following assertion is an immediate
consequence of (4 .1 ). 

’

LEMMA 4 .1. - The spectrum consists of eigenvalues accumulating
only at the points 1 and - 1. Moreover, all eigenvalues except possibly the
limit points 1 and - 1 have finite multiplicities.
We shall denote the eigenvalues of the operator E accumulating at 1

by

and the eigenvalues accumulating at -1 by

Vol. 53, n° 3-1990.
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Here the numbers 8; and 11; are called scattering phases. Note that
compared to section 1 the definition of scattering phases has been slightly
changed. Namely, the phases 8 coincide with e and the phases 11 differ
from e by x/2. This is consistent with a constant phase shift by lx/2 which
is taken into account in the spherically symmetric case. On the other
hand, we accept enumeration of phases 8; and lln:t according to their
values whereas in the spherically symmetric case phases are usually enu-
merated by orbital quantum numbers.
Now we formulate our main result about asymptotics of the scattering

phases as n - oo .

of a potential q (x) have the asymptotic form

as I x 1-+ ~. Assume also that q satisfies the bound ( 1.1 ) with ø &#x3E; (oc + 1 )/2.
Define the number p and the functions SZ + (w, ~) by the relations (3 . 5) and
(3 . 6). Then the following limits exist

where

We emphasize that according to (4 . 4) the leading terms of the asympto-
tics of 8~ and 11: coincide with each other.
The result about the estimate of scattering phases is formulated in

essentially the same (but simpler) way.

2. Let us start with the proof of Theorem 4.2. First we reduce the

study of eigenvalues of the unitary operator E to that of some self-adjoint
operator. It is convenient to choose

as such an operator. The spectrum of B consists of eigevalues, accumulat-

ing possibly from both sides at the points 1 and - I . We denote them by

Annales de l’Institut Henri Poincaré - Physique théorique
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Jl;, ~; -+ 1 and v~, v~ -~ - 1 ±0, respectively. Clearly, up to a change
of numeration by some finite number,

LEMMA 4 . 4. - Assume that 11; ~ 1-::1 bJ: n - p or v; ~ -1-::1 c:t h - P , for
some p&#x3E;O as n ~ ~. Then 03B4~n ~2-1 b+ n-P or ~±n ~2-1 c+ n-P as n ~ 00.
Comparing (3.2) and (4.7) we obtain an explicit expression for the

operator B. Let

with R=R(~+~’0). Denote

and

Then B=J + K.
The plan for proving Theorem 4 . 2 is the following. By using Proposition

3 . 1 and Corollary 3. 3 the s-numbers of the operator K are estimated by
o (n - P~2). The asymptotics of the spectrum of the operator P + KP + are

found with the help of Propositon 3.2. According to Theorem 2.4 this
gives the asymptotics of the spectrum of the operator B.
The bound on sn (K) is quite simple.

Thus Corollary 3. 3 ensures the bound for sn (To).
Similarly, with bounded Y and any

y E ( 1 /2, P- 1/2). By Proposition 3.1 it follows that

Since y can be chosen arbitrary close to 1 /2, this concludes the proof.
- 

Taking into account the inequalities (2 . 1 ) and (2. 2) we obtain the
estimate for the s-numbers of the operator K defined by (4. 9), (4 .10).

Vol. 53, n° 3-1990.
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3. Now we shall study the operator P + KP + . By Lemma 4. 5

So we need only consider the asymptotics of the operator

By (4. 2) and (4. 9) and because J2 = I we have

where

Let Ve be multiplication by qe (x). Then according to (3 .1 ), (4 . 8)

Since J2 = I, the operator (4.14) commutes with J and

We can directly apply Proposition 3.2 to find the asymptotics of the
spectrum of the operator (4.15). However, the operator (4.13) also con-
tains the term Te J~. Considered as an integral operator it has a singularity
on the antidiagonal 03C9 = -03C9’. We shall show that does not contribute

to the asymptotics of the spectrum of L::!:. To this end it is convenient to
reduce the problem to the study of the operator 2YL~ Y where Y
is multiplication by the characteristic function of any fixed hemisphere

LEMMA 4. 7. - Let L + be any compact operator obeying the relation
(4 . 16). Then the operators L + and M::t: = 2 YL± Y have common non-zero
eigenvalues with the same multiplicities.

Taking into account the relations and (4.16) we find that this

operator equals

The latter operator is obviously unitarily equivalent to the operator

Annales de l’lnstitut Henri Poincaré - Physique théorique
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acting in the two-component space L2 (So) (8) C2. The non-zero spectrum
of the operator (4. 17) is the same as that of the operator M + . This
concludes the proof.
Now we apply this Lemma to the operator (4. 13) when

Proposition 3 . 2 allows us to find the asymptotics of its spectrum.

LEMMA 4. 8. - Let the condition (4. 3) be satisfied and let the coefficient
a + be given by (4. 5). Define the operator M + by the relations (4. 15),
(4 . 18). Then for both signs (J= "+ 

" 

and (J= "- "

Proof - Let us apply Proposition 3 . 2 to operators YTe Y and YTeY’.
According to (3. 8)

where a+ (So) is given by (3 . 7). Since for an even potential g(2014(D)=~((o),
we have that Q(-co,B)/)==Q(co,B(/). Therefore the integral in (4 . 5) over
Sd -1 equals twice the integral over So. This shows that a~(So)=7t’~+.
Moreover, according to (3 . 9)

Taking into account Proposition 2.1 we obtain the asymptotics (4. 19)
for the sum (4. 18).

4. Now for the proof of Theorem 4. 2 it suffices to combine the results
obtained. Lemmas 4.7 and 4.8 ensure that for the operator (4. 13) and
both signs a = 

" + " and a = " - "

Since ~3 &#x3E; (ex + 1)/2 the number pi 1 in (4 , l l) can be chosen larger than p.
Thus, applying Proposition 2. 1 to the operator

we find that

Moreover, since 2 p, Corollary 4 . 6 shows that sn (K) = o (n-p/2). There-
fore we can apply Theorem 2 . 4 to the operator B==~+K. In our case ~
plays role of A and X equals 1 or -1. It follows that the eigenvalues of
B are split into two series with asymptotics

Finally, taking into account Lemma 4.4 we establish the asymptotics
(4. 4). This concludes the proof of Theorem 4. 2.

Vol. 53, n° 3-1990.
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The proof of Theorem 4. 3 can be obtained in a similar (but considerably
simpler) way to that of Theorem 4.2. In fact, under the assumption

Corollary 3 . 3 gives the bound ~(L~=0(~). Taking
into account (4 . 11 ) we obtain, according to Lemma 4. 7 and inequality
(2. 2), that sn (P6 KP a) = 0 (n - P). Moreover, sn (K) = 0 (n - p/2) by Corollary
4. 6. Thus Theorem 2. 5 gives that

The bounds (4. 6) are immediate consequences of these relations.
Remark 4.9. - As it is clear from the proofs, the limits (4.4) and the

bounds (4 . 6) for 8~ (~), 11; (A) are uniform with respect to A E if

Finally we note that for an even potential q (x) = q ( - x) the proofs of
Theorems 4. 2 and 4. 3 become essentially simpler. In this case the subspa-
ces H + and H _ of even and odd functions are invariant under the actions
of S and ~ . Clearly, the spectra of these operators are the same on H+
and differ only by the sign on H _ . Thus the evaluation of the asymptotics
of eigenvalues of E is reduced to that of S on the subspaces H + and H _ .
On the other hand, for an odd potential q (x) = - q ( - x) Theorems 4 . 2

or 4.3 give only a bound for the scattering phases. Namely, if an odd q
obeys ( 1.1 ) then according to any of these Theorems, 8; =(9(~’~) and
~ n = O (n - P 1), where pi 1 is an arbitrary number smaller than 2(P-1)
(d-1)-1. Indeed, we do not know the asymptotics of the scattering phases
even in the case of the dipole potential
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