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Stochastic reaction diffusion equations
and interacting particle systems

G. JONA-LASINIO

Dipartimento di Fisica, Universita "La Sapienza"
2, Piazza A. Moro, 00185 Roma, Italy

Henri Poincaré,

Vol. 55, n° 2, 1991, Physique théorique ’

ABSTRACT. - In this paper after a brief survey of recent progress in the

theory of stochastic reaction diffusion equations, we discuss their role

in describing deviations from hydrodynamic behaviour in the statistical
mechanics of simple models. In this connection we analyse qualitatively
the limits of such a description and how this is supplemented by exact
calculations.

RESUME. 2014 Apres une breve description des progres recents dans la
theorie des equations de reaction diffusion stochastiques, nous discutons
leur utilisation dans la description des deviations par rapport au compor-
tement hydrodynamique dans la mecanique statistique de modeles simples.
Dans ce cadre nous analysons qualitativement les limites d’une telle

descriptions et comment elle peut etre complementee par des calculs exacts.

1. In this paper we shall first briefly review some aspects of a theory
whose development is very recent: nonlinear partial differential systems of
parabolic type perturbed by white noise in time and space. The peculiarity
of the subject is that such equations very often do not stand white noise
which is a much too singular perturbation. On the other hand important
phenomenological equations in physics like the Navier-Stokes equation
and all sorts of reaction diffusion equations are examples of parabolic
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systems and additive white noise is a natural modelization of neglected
effects and/or background influence in many concrete situations.
A general theory of small fluctuations from thermodynamical equili-

brium was proposed long ago by Onsager and Machlup [1] and was
developed on the assumption that these were driven by a white noise to
be added to the macroscopic evolution equations. Onsager and Machlup
considered only finite dimensional situations (no space inhomogeneity)
and linear equations (situations close to equilibrium). If now one assumes
that the obvious generalization of Onsager-Machlup to the space inhomo-
geneous case consists in adding a white noise in time and space to the
(in general non linear) hydro dynamical macroscopic equations, one is

immediately faced with the mathematical difficulties mentioned above.
Actually the first incentive for studying rigorously stochastic parabolic

equations came from a different area of physics: quantum field theory.
The approach to the construction of Euclidean measures called stochastic
quantization indeed requires a serious understanding of such equations.
This explains why the methods of constructive quantum field theory
provided the tools for the first steps in developing the theory [2] which
makes essential use of the concept of renormalization (1). In the next
section we shall describe the class of equations which so far have been
treated rigorously through an appropriate renormalization procedure. We
shall introduce the notion of probabilistic weak solution and briefly discuss
its construction. In section 3 we will comment on the scale dependence of
fluctuations which is characteristic of our equations and point out some
of its consequences.

In the last section we examine a more fundamental question. It has

always been an ambition of statistical mechanics to provide a derivation of
phenomenological macroscopic equations from the underlying microscopic
dynamics. This reductionist program has so far succeeded only for very
special discrete models but the insight which emerges is hopefully of much
greater generality [4]. The next natural question in connection with these
simplified models is a description of the fluctuations with respect to the
behaviour imposed by the macroscopic equations. Some progress in this
direction has been made recently. We then try to compare the theory of
fluctuations for stochastic parabolic equations with results obtained in the
context of special microscopic models. Important conclusions will emerge.
In general the two descriptions agree only on sufficiently large space scales
and for not too large fluctuations.

(~) See also the more abstract setting of Albeverio e Rockner [3] based on the theory of
infinite dimensional Dirichlet forms.
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753STOCHASTIC REACTION DIFFUSION EQUATIONS

2. The general form of stochastic reaction diffusion equations that we
shall consider is

with

x, and are vectors in some finite dimensional space.
The are polynomials in ~j= 1, ..., nand ~ is a parameter describing
the intensity of the noise. As it is the system (1), (2) does not make sense
if x, x’, E Rd, r~&#x3E; ~ due to the singular character of the noise. For r~&#x3E; 1
white noise generates large fluctuations at small scales in space. If F is
non linear the powers of the fields ({&#x3E;i induce high frequency divergences
which have to be removed in order to give a meaning to the equation.
This is what is called in quantum field theory the problem of ultraviolet
stability. The method to solve it when applicable is called renormalization
and consists in a redefinition of the physical parameters appearing in the
problem. However even after renormalization the equations retain only a
formal character due to the appearance of infinite constants.

In order to construct from the renormalized equations a well defined
stochastic process, one has to introduce the notion of weak probabilistic
solution. This notion exists already in the theory of ordinary stochastic
differential equations and applies in those situations where the non lineari-
ties are not sufficiently smooth, for example they do not satisfy a Lipschitz
condition. The idea consists in the following: even though the equation
cannot be solved pathwise, a well defined measure can be associated to it.
One way of constructing such a measure is via a regularization of the
equation and then a passage to the limit on the associated measure. It is
well known that the measure describing the solutions of an ordinary
stochastic differential equation can be given explicitely in terms of its
Radom-Nykodin derivative with respect to the Wiener measure or some
other reference measure. The expression of this density is often referred
to as the Cameron-Martin-Girsanov formula. In our case let us take as
reference the measure generated by the linear part of (1) that is by the
process

The formal expression of the density is then

with
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The double dots :: indicate the operation of renormalization mentioned
above and ( . , . ) is the scalar product in the space variables. In two space
dimensions the divergences are weak (logarithmic), and the renormaliz-
ation can be accomplished by modifying F, which is assumed a polynomial
of degree n, with the introduction of monomials of degree lower than n
multiplied by infinite constants. Actually in the case of equations ( 1 ), (2)
one has also to perform an additional smoothing in space of the right
hand side of ( 1 ) and modify correspondingly the covariance (2). We do
not enter into the details of these technical problems for which the reader
is referred to [2].
The basic fact is that using the methods of constructive field theory at

least in two space dimensions one is able to give a precise meaning to (4),
in spite of the infinite renormalizations. In particular correlation functions
of the fields

are well defined distributions in the xi.

3. In this section we want to point out some peculiarities of the stochastic
fields ~i, connected with their singular behaviour in the space variables.
They are distributions and only when smeared over some region A they
become good stochastic variables. Therefore as physically meaningful
quantities we may take the averages

where I O I is the area of A. I&#x3E; A will possess all moments, however these
moments will diverge if 0394 shrinnks to a point. Typically for a small 0394

This means that even for very small 8 the stochastic pertubation will have
strong effects on sufficiently small scales. As a consequence the dynamics
of the fields will be different at different scales. For example at small
scales a stochastic trajectory I&#x3E; A (t) will hardly reflect the structure of the
attractors of the deterministic equation corresponding to 8=0 and the
Lyapunov exponents will depend in general on the chosen A. If we want
to resolve two points of an attractor separated il some metric by a distance
d we have to take a sufficiently large A. This in turn leads to some kind

cle l’Institut Henri Poincaré - Physique theorique



755STOCHASTIC REACTION DIFFUSION EQUATIONS

of uncertainty relationship in connection with the possibility of studying
the spacial dependence of such points (2).

In fact all space structure below the scale I 1B 11/2 is lost. In the present
two dimensional situation this effect is not very conspicuous due to the
weakness of the divergences. The situation would be very different in 3
dimensions where linear divergences are expected. In such a case we would
have a relationship of the form

where I 1B |is the volume of the region 1B and C is a suitable constant; (8)
is obtained simply by imposing that the dominant part of E (I&#x3E;j¿B)2 be less
than d2. Similar arguments can be developed for the study of the space
dependence of any field configuration. Of course the numerical relevance
of a relation like (8) has to be analysed in every particular situation.

4. In this section we address an important physical question. To what
extent the generalized Onsager-Machlup theory which, as we have emphas-
ized, leads to stochastic PDE, is correct? We begin with a qualitative and
simplified description of the problem of hydrodynamic fluctuations for a
lattice spin model in d dimensions evolving according to Glauber (spin
flip) plus accelerated Kawasaki (simple exchange) dynamics [5]. This means
that a function of a spin configuration 6 evolves following the

equation

with

cy" is the configuration obtained from 6 by flipping the spin at the site x
while is obtained by exchanging the spins at sites x and y. c (x, cr) is
an appropriate rate function.
The following basic facts were established in [5]. Define the magnetiz-

ation field and the magnetization fluctuation field

(2) Under particular boundary condition or in presence of non homogeneous coefficients
in the equation the elements of the attractor may exhibit non trivial space dependence.

Vol. 55, n° 2-1991.
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cp test function. Then when 8-~0.

(a) X~ tends in probability to

where m (r, t) is a solution of an equation of the form

F (~) is typically a local polynomial.
(b) Y~ approaches

where is a solution of the linear stochastic equation

is a white noise in the time variable and a superposition of white noise
and derivatives of white noise in the space variables.
We make first some heuristic comments. It looks that everything goes

as if one could define a local field

which, using ( 13) and ( 14) and eliminating m, satisfies a non linear

stochastic differential equation of the form

This is not really an equation for 03BE~t because it still contains However

since 11t is a rapid variable, if compared with ~ we may try to substitute
for it its equilibrium expectation values. Then to order (Ed/2)2 we have a
closed equation for ~. However if F is non linear this equation has no
meaning in any dimension because the derivative of white noise is much
too singular. To do better we first smear 11t over some small domain. The
new field will satisfy approximately an equation like ( 14) where only the
white noise term survives in a. Similarly for ~. But then something
remarkable happens. For d= 2 and F a polynomial of third degree the
term E2 G in ( 16) evaluated with the equilibrium expectation values for

11; ... has exactly the form of the renormalization counterterms neces-
sary to make ( 16) a meaningful equation in the weak sense described in
section 2.

All this is very rough but indicates two important circumstances. A
description of the magnetization field in terms of a non linear stochastic

. Annales de l’Institut Poincaré - Physique theorique
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parabolic P.D.E. is perhaps possible only if (i) it does not deviate too
much from a solution of the hydrodynamic equation, (ii) it is averaged
over a suitable scale to eliminate the hard fluctuations induced by the
derivative of white noise.
How much of this picture can be substantitated by rigorous arguments?

The first results in this direction support the above description and in
addition provide the corrections to it when conditions (i) and (ii) are not
satisfied. In other words they supplement the Onsager Machlup theory.
The rigorous theory is developed by calculating the large fluctuations of
the magnetization field when ~ --~ 0. These are expressed as usual in terms
of the action functional

where mt is an arbitrary trajectory, I (m) has been calculated explicitely in
a work in collaboration with C. Landim and M. E. Vares [6], developing
the approach of [7], for a system strictly related to (9), ( 10). It is a

consequence of our results that for trajectories not too far from a solution
of (13) and sufficiently regular at small space scale I (m) can be written
approximately

where I1 is a functional which contains powers of its argument higher
than 2. The first term in the r.h.s. of (18) is what we may call the Onsager-
Machlup approximation and can be interpreted in terms of an underlying
stochastic P.D.E. suitably renormalized if d&#x3E; 1 along the lines indicated
in section 2. ( 18) says however that in general the fluctuations have a
more complex structure than those generated by adding a white noise to
hydrodynamics. As in the Onsager-Machlup approximation the hydrody-
namic trajectory remains the most probable trajectory for a fluctuation
which relaxes to equilibrium. Work is in progress to clarify the physical
consequences of deviation from the Onsager-Machlup theory.

Problems related to those discussed in this section are addressed in a
recent paper by G. Eyink [8].
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