@article{AIHPA_1992__56_3_307_0, author = {Minami, Nariyuki}, title = {Random {Schr\"odinger} operators with a constant electric field}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {307--344}, publisher = {Gauthier-Villars}, volume = {56}, number = {3}, year = {1992}, mrnumber = {1160853}, zbl = {0752.60052}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1992__56_3_307_0/} }
TY - JOUR AU - Minami, Nariyuki TI - Random Schrödinger operators with a constant electric field JO - Annales de l'I.H.P. Physique théorique PY - 1992 SP - 307 EP - 344 VL - 56 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1992__56_3_307_0/ LA - en ID - AIHPA_1992__56_3_307_0 ER -
Minami, Nariyuki. Random Schrödinger operators with a constant electric field. Annales de l'I.H.P. Physique théorique, Tome 56 (1992) no. 3, pp. 307-344. http://archive.numdam.org/item/AIHPA_1992__56_3_307_0/
[1] Remarks on Schrödinger operators with an electric field and deterministic potentials, J. Math. Anal. Appl. Vol. 109, 1985, pp. 333-339. | MR | Zbl
,[2] Schrödinger operators with an electric field and random or deterministic potentials, Commun. Math. Phys., Vol. 88, 1983, pp. 387-397. | MR | Zbl
, , , , and ,[3] Exponential localization in one dimensional disordered systems, Duke Math. J., Vol. 49, No. 1, 1982, pp. 191-213. | MR | Zbl
,[4] Exponential localization in one dimensional dosordered systems, Duke Math. J., Vol. 49, No. 1, 1982, pp. 191-213. | MR | Zbl
,[4] Asymptotic expansions. Cambridge University Press, Cambridge, 1965. | MR | Zbl
,[5] From power pure point to continuous spectrum in disordered systems. Ann. Inst. Henri Poincaré, Phys. Théor., Vol. 42, No. 3, 1985, pp. 283-309. | Numdam | MR | Zbl
, and ,[6] On subordinacy and analysis of spectrum of one-dimensional Schrödinger operators, J. Math. Anal. Appl., Vol. 128, 1987, pp. 30-56. | MR | Zbl
and ,[7] On subordinacy and analysis of Schrödinger operators with two singular endpoints. Proc. R. Soc. Edinburg, Vol. 112A, 1989, pp. 213-229. | Zbl
,[8] A pure point spectrum of the stochastic one-dimensional Schrödinger operator, Funct. Anal. Appl., Vol. 11, No. 1, 1977, pp. 1-8. | Zbl
, and ,[9] Differential equations with non-oscillatory eigenfunctions, Duke Math. J., Vol. 15, 1948, pp. 697-709. | MR | Zbl
,[10] A characterization of the spectra of one-dimensional wave equations, Am. J. Math., Vol. 71, 1949, pp. 915-920. | MR | Zbl
,[11] Stochastic differential equations and diffusion processes, North-Holland/Kodansha, 1981. | MR | Zbl
and ,[12] Diffusion processes and their sample paths, Springer, Berlin, 1965. | Zbl
and ,[13] Lyapounov exponents and spectra for one-dimensional random Schrödinger operators, Contemporary Math., Vol. 50, 1985, pp. 277-286. | MR | Zbl
,[14] Localization in general one-dimensional random systems. II. Continuum Schrödinger operators, Commun. Math. Phys., Vol. 112, 1987, pp. 103- 119. | MR | Zbl
and ,[15] Schrödinger operator with potential which is the derivative of a temporally homogeneous Lévy process. Probability and mathematical statistics. Fifth JapanU.S.S.R. symposium proceedings, Lect. Notes Math., 1299, 1986, pp. 298-304. | MR | Zbl
,[16] Exponential and super-exponential localizations for one-dimensional Schrödinger operators with Lévy noise potentials. Tsukuba J. Math., Vol. 13, No. 1, 1989, pp. 225-282. | MR | Zbl
,[17] The structure of eigenfunctions of one-dimensional unordered structures, Math. U.S.S.R. Izv., Vol. 12, No. 1, 1978, pp. 69-101. | Zbl
,