
ANNALES DE L’I. H. P., SECTION A

SANDRO ZAGATTI
The Cauchy problem for Hartree-Fock time-
dependent equations
Annales de l’I. H. P., section A, tome 56, no 4 (1992), p. 357-374
<http://www.numdam.org/item?id=AIHPA_1992__56_4_357_0>

© Gauthier-Villars, 1992, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1992__56_4_357_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


357

The Cauchy problem for Hartree-Fock
time-dependent equations

Sandro ZAGATTI

Scuola Internationale Superiore di Studi Avanzati (SISSA),
Strada Costiera 11,1-34014 Trieste, Italy

Henri Poincaré,

Vol. 56, n° 4, 1992, Physique ’ théorique ’

ABSTRACT. - We study the Cauchy problem for time dependent Hartree-
Fock equations for an infinite system of fermions with a single particle
potential V and a two-body interaction potential v. We prove existence,
uniqueness and globality of solutions in L2 and in H 1 under suitable
condition on V and on v.

RESUME. 2014 Nous etudions Ie probleme de Cauchy pour les equations
de Hartree-Fock dependant du temps pour un systeme de fermions infini
avec un potentiel d’une seule particule V et un potentiel d’interaction a
deux corps v. Nous démontrons existence, unicite et globalite des solutions
in L2 et in H1 avec conditions convenables sur V et sur v.

0. INTRODUCTION

We consider the time-dependent Hartree-Fock equations for an infinite
system of fermions:
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358 S. ZAGATTI

where each Pj is a single particle wave function defined on I x 

(/=[0, T], or I=[0, + oo [); V is a real single particle potential and
~ is a two-body interaction potential which is real and even, ~ is the

Laplace operator on R" (we assume n ~ 2).
For a physical derivation of (0.1) one can see in [ 1 ].
In order to treat this infinite system of equations we introduce a

which collects all the states and rewrite (0.1) in a
more compact form:

where F" (D) accounts suitably for the nonlinearity, and we assume that if
A a generic single particle linear operator, its action on a sequence

given by with the obvious condition that
if A is unbounded A I&#x3E; is defined for all those 03A6 such that any Pj belongs
to the domain of A.

Written in such a form (0.1) looks like a nonlinear Schrodinger equation
for a single particle and our work is a generalization of the tools that in
the last years have been used in the study of it to Hartree-Fock equations,
we refer to [2] to [5] and in particular to [11]. By this way we are able to
improve previous results about time dependent Hartree-Fock equations
which can be found in [6] to [9]. As in [11] we deal with L2-solutions and
with H1 solutions (L2 = L2 (Rn), usual Sobolev space) with
the modification realized by substituting these spaces respectively by l2 (L2)
and by l2 (H1), where, in general, for a Banach space X l2 (X) is the Banach
space of such that any belongs to X and

def

II 1&#x3E;, l~ (X) ~) 2 = ~ is finite. The choice of H’ is due to the fact
J~N

that in this space conservation of energy finds a natural expression,
while L2 is the natural space in which quantum mechanical problems are
formulated.
Our purpose is to establish existence and uniqueness of solutions for

the Cauchy problem associated to (0.2) written in integral form under
suitable conditions on V and on v. Now we briefly anticipate the content
of the paper. The first result we state is about H’ solutions: under the
assumption

means /=/i+./2 with /; E L’i and, in general,
L/==I/(R"), r &#x3E;_ 1 ) we prove local existence and uniqueness. The proof is
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359THE CAUCHY PROBLEM

made via an approximating procedure and relies crucially on certain
properties of the free evolution group that we will resume in the

following section. The approximation procedure is performed by cutting
the potentials V and v. This allows the use of a result about abstract

equation in Banach spaces that one can find in [10}. After having proved
existence and uniqueness of solutions we derive conservation of l2 (L2)-
norm and of the energy and under the further assumption that it is

where i~==max{0, 2014~} is the negative part of the two-body interaction
potential, we prove that solutions can be prolonged up to infinity. The
second result regards L 2 solutions and the proof of local existence and
uniqueness requests

~ 1

and is a classical contracting mapping argument. Then by a density
argument and using the previous result we show that solutions are actually
global. For the sake of- simplicity in the whole proving frame we write
V ~ Lq and v _ omitting the decomposition in two addenda; one
can easily convince himself that the proof in the general case would request
only a heavier notation.
The paper is organized as follows. Section 1 contains some well known

results about basic tools in the study of nonlinear Schrodinger equations
together with the definition of the quantities and of the notation which
will be used in the paper. In Section 2 we simply list some inequalities
used in section 3 and 4 that we have collected for compactness. Section 3
is about approximating solutions, their existence and properties, while
section 4 contains the results stated in a correct form.

1. PRELIMINARIES AND NOTATIONS

We start with the definition of a series of those quantities useful to
write and to study equation (0.2) in the way specified in the introduction.

DEFINITION 1.1.- Let V : R" -+ Itn -+ R even. For the sequences

Vol. 56, n° 4-1992.



360 S. ZAGATTI

We make also the convention that C. ~’ _ ~ cp j ~r j ~ j ~ N, I I&#x3E; /2 = {I /2}.
It is worth remarking that whenever they exist E (~) is real and that

~ 0 implies ~ ~ ~. (D) ~ o.
j’eN

With these positions the Cauchy problem is written in the following
form:

We now introduce the basic notations used in the paper. We denote by
n the dimension of the space assuming ~2 and with the Lp norm

for we write /=2014~2014 and for any k E Z. Hk = Hk (Rn)
r- 1

is the usual Sobolev’s space and we remind that setting 2* = 2 n for anyp g 
n-2 

Y

r E [2, 2*[ and for any it holds true that

where 8(r)=-2014-; and also is valid the continuous embedding:
2 r

For I interval of R and X Banach (or Hilbert) space we call X)
the Banach space of functions f : I 2014~ X strongly measurable with the

def
condition Moreover is the

Banach space of sequences 03A6 = { 03C6j}j~N such that 03C6 j ~ X for any j~X for
def

any j ~ N and 03A6 lp (X) p = 03A303C6j px, +00 (with the obvious definition
jEN

of the sum and of external product). We remark that l2 (X), eventually

Annales de l’Irastitut Henri Poincaré - Physique theorique



361THE CAUCHY PROBLEM

def

endowed with the inner product (D,T)~2~== ~ (p j’ Bf1 j)X’ /2 (X) is a

./eN

Hilbert space.
For the sake of simplicity we set:

and

As consequences of ( 1. 2) and of ( 1. 3) the following assertions are true:
- For any r E [2, 2*[ and for any 03A6~ l2 (H 1):

- For any r E [2, 2*[ and for 

Introducing the free evolution group S (t), formally defined by the

Cauchy problem (0, 1 ) is written in the integral form:

Setting

we study the equation

Now we give properties of S (t) and of U.

LEMMA 1.1. - Let r , r E 2, 2*[; 2 , 1 interval o R. Then therez 2 ~[2,2* [; P t .

Õ (ri)
exists a positive constant C, such that, for any 03A6 E LP2 (I, l2 (Lr2)):

LEMMA 1 . 2. - Let r E 2 2*[, p = 2 I interval o R. Then there existsL ~ G P 
Õ (r) 

~ .f

a positive constant C such that, for any 03A6 E l2 (L2):

The proofs of these two lemmas are based on the inequality:

VoL56,n°4-1992.



362 S. ZAGATTI

Now we define the main spaces used in the paper. I denotes the interval

[0, T], unless otherwise specified, we take r~[2, 2*[, p=20142014, T&#x3E;O and
set:set:

equipped with the intersection norm:

and

By virtue of Holder inequality and of Sobolev embedding ( 1. 4) it is
easy to prove the following

LEMMA 1.3.- (i) For any sE[2, 2*[, any T&#x3E;0, for any
ö(s)

I&#x3E; E Y (T):

and

(ii) Given r ~[2, 2*[, any T&#x3E;O
’ o 

03B4(r) 
, , . 

03B4(s) 
, , j

~~ 

and

2. A PRIORI ESTIMATES

In this section we collect a series of inequalities used in the following.
The most important device in proving them is property (1.7) of the free
Schrodinger evolution group.
We assume:

Annales de l’fnstitut Henri Poincaré - Physique theorique



363THE CAUCHY PROBLEM

We say that

- (V, r) satisfies H 1 if V E Lq and - ~ 2 8 ~),
q

- (v, r) satisfies H 2 if v E Lp and ~ 3 8 (r) + 1,
p

- (v, r) satisfies H 3 ~~38(r)+l.
p p

All over the section C denotes a positive constant, and I=[0, T], 

LEMMA 2 .1. - (i) Let (V, r) satisfy H 1 and let ~i~[2, r] such that

n = 2 8 (s~). Then, for E l2 (L’i):
~ 

.. _ ....... .....

(ii) Let (v, r) satisfy H 2 and ’ r2 E [2, 2*[ and ’ s2 E [2, r], such that

n = s (r2) + 3 ~ (s2). Then, for any 1’ ~, S~ E l2 (LS2):
p

(iii) ~et (V, r) and (W, r) satisfy H 1 with the same q. Let T &#x3E; 0. Then

there exist and such that, for any 1&#x3E;, and for any
a E [2, 2*[:

where (X = 20142014.
S(~)

(iv) Let (w, r) and (w, y) H2 with the same /?. Let T &#x3E; 0. 

there exist C &#x3E; 0, v &#x3E; 0 and Vo&#x3E;0 such that for any C, 
~~ae[2,2*[:

2
where ex = 20142014.

Vol. 56, n° 4-1992.



364 S. ZAGATTI

(v) Let (v, r) satisfy H 3. Let T&#x3E;O. Then there ’ exist C&#x3E;O l such
that for any andfor any ~e[2, 2*[:

M~~ (X = 201420142014 .
S(a)

VeL" a~-"=28(~) ~A ~e[2,2*[. 7%~ ~ ~~ ~,

Proof.~ First we notice that 8(.) is a continuous increasing function
from [2, 2*[ to [O,l[ [ so the expressions chosen for n and n can be satisfied;

R’ 7~
then (i ), (ii ), (vi ) are straightforward applications of Holder’s, Young’s
and Schwartz’s inequalities.

(iii ) Applying inequality ( 1 . 7) we have:

where ~ is chosen in such a way for some 
~

(as usual 0’1 = .20142014); then we get the result by (2.1), by Hölder’s inequal-B 03B4(S1)
ity and by (1.10) setting 1 -8(~1).

(iv) Again by (1.7):

where r2 E [2, 2*[ is chosen in such a way that

Annales de I’Institut Henri Poincaré - Physique theorique



365THE CAUCHY PROBLEM

then (2 . 4) is a consequence of ( 1. 9), of ( 1.10), of Holder’s inequality and
of the decomposition:

setting v= 1 -03B4(r2) 2-03B4(s2) 2 and Vo= 1 -03B4(r2) 2
(v) The proof of (2. 5) is analogous to that one of (2 . 4) and makes use

of (1.10).
(vii) Start with the decomposition:

then the thesis follows by Holder’s, Young’s and Schwartz’s inequalities.
We end this section with a

Remark 2 .1. - Inequalities (2 .1 ), (2 . 2), (2 . 6) and (2 . 7) hold true
when and implying in particular that the map

is locally lipschitzian in l2 (L2).

3. APPROXIMATE SOLUTIONS

We consider in this section approximate solutions of the equation (1. 6).
The approximation is realized by cutting the potentials V and v. The

purpose is then to take the limit of these solutions as the cut potentials
grow to the original ones.

DEFINITION 3 . 1. - For ~ 1; ~?~ 1 and for mEN, we set:

and we write:

Vol. 56, n° 4-1992.
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We study the equation:

in L 00 (0, T, l2 (L 2)) .

LEMMA 3.1. - Let V~Lq, 
’ 

q~1; v ~ Lp, 
’ mEN and 

Then there exists a ~ + 00[, /2 (L2)) U C ([0, + 00[, /2 (H2)),
such that:

is solution = S (.) q 0 + U + Fm (T)], ~ holds true 

(Continuous dependence from initial data).

P~oo, f ’. - By remark (2 . 1 ) the map 0

is locally lipschitzian from l2 (L2) into itself, then there exist Ti&#x3E;0,
depending only on ~ Oo!!? and a unique

solution of (3 . 1 m) depending continuously on initial data and solution
moreover of the classical Cauchy problem associated to (0.1) with

(p/0)=(p~ where ~o = ~ cp~°~ }~ E N. For a proofs [10]. Multiplying (0.1)
by c~~ and the conjugate of (0.1) with subscript l by and subtracting
one gets that

therefore the solution preserves l2 (L2)-norm and then it can be prolonged
up to infinity (see ~ 10] again). Statement (iv) easily follows because the
length of the interval of existence depens only on the norm of initial
datum. To end the proof we notice that the map t ~03C6j(t) ~2 is differen-
tiable with respect to t and, for any j, it is:

then standard computation ensures energy conservation.

Remark 3. 1. - It is of physical interest to notice that by virtue of
(3 . 2), if is a sequence of orthonormal functions C (t) is still so.

Annales de l’Institut Henri Poincaré - Physique theorique
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LEMMA 3 . 2. - Let V~Lq, q~1; v ~ Lp, p~1; m~N; T &#x3E; 0 and

1&#x3E;0 E l2 (H1). Then there exist a unique 03A6 E C ([0, T], l2 (H1)) such that:
(i) I&#x3E; is solution of (3 . 1 m~ in C ([0, TJ, l2 (L 2)),

I( I&#x3E; (t~ [f - H 1&#x3E;0 ((, V t E [0, T],Em (I&#x3E; ( t~J - (1&#x3E;0)’ ’v’ t E [0, T].

Proof - be a sequence in l2 (H2) converging to 1&#x3E;0 in
l2 (H1). For any l consider

solution of (3 .1 m) as ensured by previous lemma. By continuous depend-
ence from initial data if follows that ~~~~ is a Cauchy sequence in

C(I,~(L~))(I=[0,T]) and one gets immediately that the limit

(I, l2 (L 2) is solution of (3.1 m) and preserves l~ (L2)-norm. By
energy conservation, (2 . 6), (2 . 7) with q =~ _ ~- oo and by /2 (L 2) norm
conservation we have:

As a consequence of the uniform bound (3 . 3) ~ belongs to L 00 (I, HI), is

weakly continous in and, by (1.4), ~~~ ~ ~ -~ ~ in C(I, l2 (Lk)) for
2*[. Using again (2.6) and (2.7), it is easy to see that

and that

(3.4), (3.5) and weak lower semicontinuity of /2 imply

and then by a time reversal argument we finally get

To end the proof of the lemma we see that (2 . 6), (2.7) and continuity
in l2 (Lk), k E [2, 2*[ imply also that t -+ II V C (t) 112 is a continuous function
and this fact, joined with weak continuity of 1&#x3E;, ensures that 03A6 belongs to
~ (y ~2 (~~)).

there exist T &#x3E; 0 and K&#x3E; 4, depending only on It l2 U, such that if
E C ([0, T], l2 is the sotution of (3. 1 m) ensured by lemma (3.2),

56, n° 4.,1992.
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then

Proo, f : - We choose a r E [2, 2*[ in such a way that (V, r) satisfies H 1
and (v, r) satisfies H 2, by virtue of energy conservation of (2 . 6), of (2 . 7)and by Sobolev inequality ( 1. 4) there exist C&#x3E;0, 81, 8~e[0, 1[ such that

Then, defining

and reminding l2 (L2)-norm conservation of solution, we get:

where C now depends on and on ~V~q. We nownotice that the equation

holds true in C (I, /2 (L 2)) and also in C (I, /2 (H - 2)); local lipschitzianity
in /2 (L 2) and the regularity theorem expressed in

[ 10] imply:

in l2 (H - 2). By virtue of embedding ( 1 . 3) and of inequalities (2.1) and
( 2 . 2 ) all terms in the right hand side of equation (3 . 8) lie in l 2 (H - 1) and
moreover

Arznnles de l’institut Henri Poiricaré - Physique theorique



369THE CAUCHY PROBLEM

Inserting (3 . 9) and (3 .10) in (3 . 7) we have

Introducing

(3.11) becomes

for some positive P, and choosing T in such a way that

we finally get that B (t)  2 B (0) for any t E [0, T]; hence the result.

4. RESULTS

We are ready to give the main results of the paper which are about
equation (1.6).

PROPOSITION 4 . 1. - Let v E Lq with n  2, v E Lp with !!.. 4,
q p

1&#x3E;0 E l2 (H I). Then there exist T* E ]0, + 00] and a ~ E C ([0, T*[, l2 (H I))
such that:

(i) I&#x3E; is solution of (1. 6) in C ([0, T*[, l2 (L2));
(ii) I&#x3E; is unique in L 00 ([0, To], l2 (H)) for any ToE ]0, T*[;

I&#x3E; (t) II = i 1&#x3E;0 II for any t E [0, T*[;
(iv) E (I&#x3E; (t)) = E (1&#x3E;0) for any t E [0, T*[;
(v) One of the following properties holds true:
1. T* = + o0

2. T *  oo and lim II I&#x3E; ( t), l 2 (H 1 ) II _ + o0

(vi ) I. f ’ moreover v _ T* = max { 0, - v } E Lp with n - 2 then T * _ + oo .(vi) If moreover v_=max{0, -v}ELPwith=2thenT*=+00.

Proof: Choose r E [2, 2*[ in such a way that (V, r) satisfies H 1 and (v, r)
satisfies H 2 and consider the sequence of approximate solutions

{ E N in C ([0, T], l2 (H 1)) with the same initial value 1&#x3E;0 whose exist-
ence was proved in lemma 3 . 2. By lemma 3 . 3 if T is small enough

Vol. 56, n° 4-1992.
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From (1.7), (1.9), (2.3), and (2.4), for any a E [2, 2*[(a=-~-) it is:B 8(~)/

/ 2 B

( p==20142014 ) by setting in (4.2) first a = 2 and then a = r and imposing T
such that:

we get is a Cauchy sequence in As in lemma 3 . 2, by
(4 .1 ) the limit C belongs to l2 (H 1 )), is weakly continuous in l2 (H 1 )

and ~" C in C (I, l2 (Lk)) for any k E [2, 2*[.
Using again ( 1. 7), ( 1. 9), (2 . 3) and (2 . 4):

so C is solution of (1. 6) in Xr (T).
for any and by virtue of (2 . 6), (2 . 7) by

convergence in C (I, l2 (Lk), k E [2, 2*[ and by weak lower semicontinuity
of l2 (H1)-norm:

Then energy conservation follows from a time reversal argument.
It is still a consequence of (2. 6) and of (2. 7) that the map:

is continuous, and this implies that ~2014~O(~), [2 (H1) II is continuous.

Finally, reminding that C is weakly continuous in [2 (H1), we have:

Properties (i ), (ii ), (iv) are proved on an interval of length T depending
on

Annales de Henri Poincaré - Physique " theorique "
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Assuming ~ (T) as initial datum the solution can be prolonged up to a
T* such that

otherwise T* = + oo .
To prove uniqueness we take a T*[ and let C, To,

l2 be two solution of ( 1. 6); we set

taking T 1 small enough we on [0, T1] then, by iteration, 03A6 =03A8
on [0, To].
To prove the last assertion we notice that by (2 . 6) and (2 . 7) with 03A8 

= 0,

by conservation laws and by ( 1. 4) we get:

setting b (t) == 1 + II ~ ~ (t) ~~Z (4 . 4) becomes

with C 1, C2 &#x3E; 0 depending on and 8e]0, 1 [. Then

" V 0 is bounded and hence, by (v) T* = + oo .
This concludes the proof.
We consider now L2-solutions of (1. 6). We set up a contracting mapping

procedure to state existence and uniqueness on a small interval [0, T]
whose length depends only on the of intial datum. Then

globality of the H1-solutions ensured by previous Proposition imply,
without any further conditions, prolongability of L2-solutions up to infin-

ity via a density argument. We start with a

DEFINITION 4 .1. - Let R &#x3E; 0, T &#x3E; 0; we set

Xr (T, R) equipped with the distance induced by Xr (T)-norm is a com-
plete metric space.
For E l2 (L2) and C EX, (T) we set:

Vol. 56, n° 4-1992.



372 S. ZAGATTI

LEMMA 4 .1. - Let (V, r) satisfy H 1 and (v, r) satisfy H 3. Then, ivenD&#x3E;O, there exist R&#x3E;O 0 and T&#x3E;O such that, for any givenII 1&#x3E;0 II ~ ~ ls a contraction on Xr (T, R). Moreover continuous dependence on initial data still holds, that is to say that there exists a positiveconstant C such that, gzven 03A8o E l2 (L2) with II 03A8o~~ D and denoting b I&#x3E;and 03A8 the fixed poants of Q03A6o and of respectively, it is:

Proof - We take a E [2, 2*[, x=2, 1&#x3E;, using ( 1. 7),b (a)
( 1. 8), (2 . 3) with W = p, and (2 . 5) we get:

Now we take (4 . 6), inserting ~o E l2 (L2) with /I 1&#x3E;0 /I ~ D,’r-O, first with a = 2 and subsequently with a=r and summing,we get

then putting in (4 . 6) ’Po = 1&#x3E;0 a = 2 and a=r and
summIng:

then, choosing Rand T in such a way that

(4.7) and (4.8) imply that Q1&#x3E;o is a contracting map on X (T, R).
again(4.6) with a= 2 and a= r, it is:

(4.10) and (4 .11 ) imply continuous dependence (4 . 5).

PROPOSITION 4 . 2. - Let V E Lq with n  2, v E Lq with n  2. Let
q pDo E l2 (L2). Then there exists E C ([0, + 00[, l2 (L2)) such that:

(i ) D is solution of (1 .6) in C ([0, + 00[, 12 (L2));

Annales de l’Institut Henri Poincaré - Physique - théorique
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(iii) 03A6 is unique in L~(0,T,l2(L2))~Lp(0,T,l2(L’))VT&#x3E;0, where

r ~[2, 2*[ M such that (V, r) H 1 and (03BD, r) satisfy H2(P=)2 03B4(r));r E [2, 2*[ is such that (V, r) satisfy H 1 and (v, r) satisfy H 2 B 8(r)/ ;
(iv) 

Proof - We choose r in such a way that (V, r) satisfy H 1 and (v, r)
satisfy H 3, by lemma 4 . 2 there exists a solution of ( 1. 6) on an interval
[0, T] sufficiently small, first we prove that it belongs to C([0, T], l2 (L2))
and that it preserves By ( 1. 3), (2 .1 ), (2 . 2) and absolute
continuity of the integral C~C([0, T], l2 (H -1), so C is weakly continuous
in l2 (L2). be a sequence in l2 (H 1) such that

and

in l2 (L2). By virtue of Proposition 4 . l, and reminding that!!... 2 for any
p

l E N it exists

solution of ( 1. 6) preserving l2 (L2)-norm. Inequality (4 .12) implies that 03A6
and the restriction of are fixed points of Q~o and of respectively
on the same closed ball of Xr (T); then by continuous dependence from
initial data (4 . 5), from (4.13) and passing to the limit l --~ o~o,
!! 03A6(t) ~=~ 1&#x3E;0 " for any t E [0, T]. So continuity in l2 (L2)) and prolungabil-
ity are proved. Statements (ii) and (iii) are obvious.

Remark 4.1. - By remark 3 .1 and by the features of the construction
made up in Proposition 4 . 1 and in proposition 4 . 2 [i. e. C (I, l2 (L2))-
convergence] both L2-solutions and H1-solutions maintain the property
expressed in remark 3.1.
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