@article{AIHPA_1992__57_3_219_0, author = {Carey, A. L. and Hannabuss, K. C.}, title = {Temperature states on gauge groups}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {219--257}, publisher = {Gauthier-Villars}, volume = {57}, number = {3}, year = {1992}, mrnumber = {1185334}, zbl = {0769.46052}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1992__57_3_219_0/} }
Carey, A. L.; Hannabuss, K. C. Temperature states on gauge groups. Annales de l'I.H.P. Physique théorique, Tome 57 (1992) no. 3, pp. 219-257. http://archive.numdam.org/item/AIHPA_1992__57_3_219_0/
[1] On quasi-free states of the CAR and Bogoliubov automorphisms, Publ. Res. Inst. Math. Sci., Vol. 6, 1970, pp. 385-442. | MR | Zbl
,[2] Representations of the canonical commutation relations describing a non-relativistic free Bose-gas, J. Math. Phys., Vol. 4, 1963, pp. 637-662. | MR
and ,[3] Bogoliubov automorphisms and Fock representations of canonical anticommutation relations, in Contemporary Mathematics, Amer. Math. Soc., Vol. 62, 1987, pp. 23-141. | MR | Zbl
,[4] Multiplier representations of abelian groups, J. Func. Analysis, Vol. 14, 1978, pp. 299-324. | MR | Zbl
and ,[5] Operator algebras and quantum statistical mechanics II, Springer, New York, 1979. | MR | Zbl
and ,[6] On fermion gauge groups, current algebras and Kac-Moody algebras, Acta App. Math., Vol. 10, 1987, pp. 1-86. | MR | Zbl
and ,[7] Some infinite dimensional groups and bundles, Publ. R.LM.S., Kyoto, Vol. 20, 1984, pp. 1103-1117. | MR | Zbl
,[8] Automorphisms of the canonical anticommutation relations and index theory, J. Func. Analysis, Vol. 48, 1982, pp, 360- 393. | MR | Zbl
, and ,[9] Absence of vacuum polarisation in Fock space, Lett. Math. Phys., Vol. 6, 1982, pp. 335-340. | MR | Zbl
and ,[10] Temperature states on loop groups theta functions and the Luttinger model, J. Func. Analysis, Vol. 75, 1987, pp. 128-160. | MR | Zbl
and ,[11] A note on the boson-fermion correspondence and infinite dimensional groups, Commun. Math. Phys., Vol. 98, 1985, pp. 435-448. | MR | Zbl
and ,[12] The massless Thirring model: positivity of Klauber's n-point functions, Commun. Math. Phys., Vol. 99, 1985, pp. 347- 364. | MR
, and ,[13] Non-commutative differential geometry, Publ. I.H.E.S., Vol. 62, 1985. | Numdam | Zbl
,[14] Symmetry behaviour at finite temperature, Phys. Rev., Vol. D9, 1974, pp. 3320-3329.
and ,[15] Banach algebra techniques in operator theory, Academic Press, New York, 1972. | MR | Zbl
,[16] Two constructions of affine Lie algebra representations and the boson-fermion correspondence in quantum field theory, J. Func. Analysis, Vol. 44, 1981, pp. 259-357. | MR | Zbl
,[17] Basic representations of affine Lie algebras and dual resonance models, Invent. Math., Vol. 62, 1980, pp. 23-66. | MR | Zbl
and ,[18] Representations of nilpotent locally compact groups, J. Func. Analysis, Vol. 34, 1979, pp. 164-165. | MR | Zbl
,[19] Characters and contact transformations, Math. Proc. Camb. Phil. Soc., Vol. 90, 1981, pp. 465-476. | MR | Zbl
,[20] The equilibrium states of the free Boson gas, Commun. Math. Phys., Vol. 36, 1974. | MR
and ,[21] The free boson gas, in Mathematics of Contemporary Physics, R. F. STREATER Ed., Academic Press, London, 1972.
,[22] Quasi-free second quantisation, Commun. Math. Phys., Vol. 50, 1976, pp. 103-112. | MR | Zbl
,[23] Acta Math., Vol. 99, 1958, pp. 265-311. | MR | Zbl
,[24] Remarks on infinite-dimensional Lie groups, Les Houches, Summer School, 1983, B. DEWITT Ed. | MR | Zbl
,[25] C*-algebras and their automorphism groups, Academic Press, London- New York, 1979. | MR | Zbl
,[26] Free states of the canonical anticommutation relations, Commun. Math. Phys., Vol. 16, 1970, pp. 1-33. | MR | Zbl
and ,[27] Methods of modern mathematical physics IV: scattering theory, Academic Press, New York, 1979. | MR | Zbl
and ,[28] Commun. Math. Phys., Vol. 19, 1970, pp. 119- 141. | MR
, and ,[29] Unitary representations of some infinite dimensional groups, Commun. Math. Phys., Vol. 80, 1981, pp. 301-362. | MR | Zbl
,[30] Jacobi's identity and an isomorphism between a symmetric algebra and an exterior algebra, Oxford lectures and unpublished manuscript.
,[31] Loop groups, Springer Lecture Notes in Math., Vol. III, 1984, pp. 155- 168, and and , Loop groups, Oxford University Press, Oxford, 1986. | Zbl
,[32] Quasi-equivalence of quasifree states on the Weyl algebra, Commun. Math. Phys., Vol. 21, 1971, pp. 171-191. | MR | Zbl
and ,