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ABSTRACT. - Let HM = H + MU be a Schrodinger operator H addition-
ally perturbed by a positive potential U, where M is a positive coupling
parameter. The limit of HM in the norm resolvent sense is a Dirichlet

operator on the complement of the support of U. A quantitative estimate
is given for the rate of this convergence as M is large.

RESUME. 2014 Soit un operateur de Schrodinger perturbe
par un potentiel positif U et M un parametre de couplage. La limite de HM
en norme de la resolvante est un operateur de Dirichlet sur le complement
du support de U. Nous donnons une estimation quantitative du taux de
convergence pour M grand.
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328 M. DEMUTH, F. JESKE AND W. KIRSCH

1. INTRODUCTION

The main objective of this article is to estimate quantitatively the rate
of convergence for Schrodinger operators if the positive part of the

potential tends to infinity.
We consider Schrodinger operators of the form HM = Ho + V + MU in

L2 (I~d , H~ is the selfadjoint realization of - ! 2 A, V a potential in Kato’s
class, U a positive potential with support r. r is a closed subset of ~d,
called singularity region. HM tends to an operator (Ho + V)~ in strong
resolvent sense as M tends to infinity. (Ho + V)~ is the Dirichlet operator
corresponding to Ho + V defined in L2 (~), where L = is the comple-
ment of r.
For many estimates in spectral theory it is useful to have not merely

the bare convergence but also the rate of convergence. Among others this
is of interest for semiclassical limits where is compared with
(h2 Ho + V)~ for small h2 (see e. g. [His/Sig] who studied also large coupling
limits in relation to semiclassical considerations).

Therefore we estimate operator norms of resolvent differences, i. e.

Our main technical tool is to estimate the corresponding operator norm
of semigroup differences heavily using properties of Brownian motion.
Of course, the value for r depends strongly on the properties of the

boundary are We tried to find very general conditions for are Therefore
we allow Lipschitz continuous are In this general case we will prove

This rate can be improved if ar becomes more regular. If for instance L
is convex then

( 1 . 3) r (M) __ const. M - ~ 1 ~4&#x3E;.

In the special case of a halfspace one has

(1 . 4) r (M)  const. M - (1/3).

In order to qualify the upper bounds we also estimate the resolvent and
semigroup differences from below. One rough lower bound is

The paper is organized as follows:
In Section 2, we collect some results concerning ( 1 . 1 ) which are prelimi-

nary to our discussion. Here, we point out that trace class properties and
convergence of e-tHM-e-tH were treated in [Dei/ Sim] for bounded r. In

Annales de l’Institut Henri Poincaré - Physique théorique



329RATE OF CONVERGENCE FOR LARGE COUPLING LIMITS

[Bau/Dem], H~ was identified as a suitable Friedrichs extension. Further-
more, problems of the above kind are considered in for a

larger class of free operators Ho.
At the end of Section 2, we extend some results of the preceding paper

[Dem] and explain, where and why there are limitations for these methods
with respect to dimension of the underlying Euclidean space and bounded-
ness of the singularity regions. We recall that [Dem] treated the conver-
gence with respect to trace class, Hilbert-
Schmidt and uniform operator norm, but did not obtain convergence
rates.

Our main result (1.2) is contained in Theorem 3 . 1. The corresponding
Section 3, which is independent of Section 2, begins with the method basic
to ( 1 . 2). In particular, we explain how the estimation of the semigroup
difference leads to two expressions (see (3. 2)). The first of these terms,

where Ar is the time the Brownian path started at hits r for the
first time, is probabilistically of interest in its own right (see e. g. [LeG],
[Kar/Shr]). We estimate ( 1. 6) in Section 4, where we see in particular that
it leads quite naturally to the Lipschitz regularity assumption imposed
on ar in Theorem 3.1.
The second term, the Laplace transform of (the distribution of) the time

spent up to time 8 in a cone by the Brownian trajectory started at the
vertex of the cone, is estimated in Section 5 using strongly results and
methods of T. Meyre [Mey].
Having thus finished the proof of our main result, we then shed some

additional light on Theorem 3 .1 in Section 6 by exhibiting the special
case of the halfspace (Lemma 6 .1 ), where the upper bound is improved
considerably, and stating lower bounds on the operator norm of resolvent
(Lemmas 6. 2. 3) and semigroup difference (Lemma 6.4).

2. ASSUMPTIONS AND PRELIMINARY RESULTS

Throughout this text, we denote the following conditions on two potenti-
als V, U and a singularity region r by

ASSUMPTION A. - Let Ho be the selfadjoint realization in

L2 Let V be a Kato class potential, i. e. V = V+ - V -, where

Vol. 59, n° 3-1993.



330 M. DEMUTH, F. JESKE AND W. KIRSCH

and

for any compact subset B of (Rd.
Moreover, we assume r to be a closed subset of (Rd with positive

Lebesgue measure and a piecewise 1 boundary.
Finally, let U be nonnegative and such that supp U=r, U (x) = 0 only

for x~~0393.

ASSUMPTION B. - Ho, V, r as in Assumption A, U = xr.
Here and in the sequel denotes the indicator function of the set

{ ... }, and p is the transition probability kernel for Brownian motion

Under Assumption A it is known that the limit of

exists in the strong resolvent sense as M -~ oo . Under mild conditions on
ôr this limit coincides with the Friedrichs extension H~ of

where 03A3=RdB0393 is the complement of r (see [Bau/Dem]).
Since H~ is an operator on L2 (E) while Ho + V acts on L2 we can

only compare functions of HM and H~ via the restriction operator

whose adjoint operator J* is the natural embedding L2 (X) ~ L2 

2.1. Convergence in Hilbert-Schmidt sense

The possibility of using the Hilbert-Schmidt norm to measure the

approximation of (functions of) H~ by HM is restricted to very few situa-
tions. In particular, one should consider dimension d 3.
We recall

THEOREM 2.1. - Let Assumption A be satisfied, r bounded. Then

where p indicates the usual operator norm for d &#x3E;_ 4, the Hilbert-Schmidt
norm for d  3 and the trace class norm for d =1.

This result can be extended to the limit absorption case z = X + 10 for
certain real 7~ (see [Dem]).

Annales de l’Institut Henri Poincaré - Physique théorique
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We will not repeat the proof of Theorem 2. 1 (given in [Dem]) here but
rather emphasize that it is strongly based upon the Hilbert-Schmidt esti-
mate for differences of powers of resolvents

(with c &#x3E; 0, OClI) and the estimate

for some constant A &#x3E; O.

The proof can be used to study a first very restrictive class of unbounded
singularity regions r:

THEOREM 2. 2. - Let r be the union of balls Bi of radius Ri around
points ai E Then we have the following estimate on the Hilbert-Schmidt
norm of semigroup differences:

where a &#x3E; 0, c (~,) could be given explicitly.

Remark. - We know that the l.h.s. of (2. 4) tends to zero as M - 00
(see (2. 5) below). Note that we can estimate the semigroup difference
uniformly in M in dependence of RI.

Proof of Theorem 2.2. - If Px) denotes the probability space
corresponding to Brownian motion started at x, and repre-
sents Brownian motion conditioned to start in x at time 0 and stop in y
at time ~,, we can evaluate the respective integral kernels and obtain

since 03BB0U (co (s)) ds vanishes iff the time TB p (co) = meas {s~03BB~ o 
’ 

of the path co spent up to ~. in r does.
Since V is Kato class,

Vol. 59, n° 3-1993.
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Hence

where we used r = U Bi and L c E,: = in the last step. In order to
f

estimate the summands above, let B denote a x - a R}.
Then

with arbitrary 1  p, s.t. -+-=1. Since
~ ~

Annales de l’Institut Henri Poincaré - Physique théorique
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Note that there and in the following we use the slight abuse of notation
that the value of the constant c may (and in fact usually does) change
from step to step.

Plugging this into ( 2 . 7 ) yields the desired bound with oc = E (d - 2) if
1+E

we let q =1 + E. D

2.2. Estimates on the operator norm

The proof employed in Section 2 .1 using the Hilbert-Schmidt properties
of semigroup differences fails if r has unbounded volume. But for applica-
tions in solid state physics or concerning N-body problems, one should
also strive for results on potential barriers over unbounded r.
The approach we will use in the sequel is based once again on the

Laplace transform

Since the norm on the r. h. s. is not bounded by the Hilbert-Schmidt norm,
we make use of the fact that integral operator.
Using [Kat, eq. (111.2.8)] and noting that the kernel is symmetric, we
have

The expression sup Jdy K (x, y) is an upper bound for the operator
x J~

norm of the integral operator K

Vol. 59, n° 3-1993.
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By Dini’s theorem, the estimate (2 . 11 ) provides a result dealing first
with bounded r. But then it can be extended to unbounded F.

THEOREM 2. 3. - Let Ho, V, U satisfy Assumption A, r compact. Then

tend to zero as M ~ 00.

Proof. - it suffices to prove

in view of (2. 10).
If R is sufficiently large, then

becomes arbitrarily small independently of M.
Hence it remains to show that for R fixed sup fM (x) tends to zero as

M - oo , where

Indeed, we have

and T03BB,0393(M)&#x3E;0 implies that fM(x) tends to zero
nonincreasingly for all x and an application of Dini’s theorem yields the
results. D

In contrast to (2 . 5), there is no integration over x in (2 . 11 ). This
enables us to deal with unbounded r as well. The simplest case is a sheet
in 

COROLLARY 2 . 4. - The conclusion o, f ’ Theorem 2 . 3 remains 

where - 00  a  b  00

Annales de I’Institut Henri Poincaré - Physique théorique
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For the sake of notational convenience, we assume V * 0. Due
to the special form of r, we have

where we used

The final expression in (2. 3) tends to zero because of Theorem 2 . 1. D

Having in mind many-body situations, the following property is of
interest:

LEMMA 2. 5. - Let V --- 0 and U denote the indicator function of I~’. Then
the class of sets r s. t.

is closed with respect to finite unions.

Proo, f : - If r = 03931 U r2, we have

Vol. 59, n° 3-1993.
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Using Lemma 2. 5 and Jacobi coordinates, the following result on an N-
body Hamiltonian

with Ho the free operator in L2 ((~g3 N) can be reduced to Theorem 2. 3.

COROLLARY 2 . 6. - Consider an N-body Hamiltonian H from Eq. (2 . 1 3)
and

where

We refrain from giving the details of the proof, because Corollary 2.6
is actually included in Theorem 3. 1.

3. GENERAL UNBOUNDED SINGULARITY REGIONS

This section contains our main result, Theorem 3.1, where the most
general situation is treated s. t. resolvent or semigroup corresponding to
HM tends to the one corresponding to H~. In particular, there is no

restrictions on the dimension of the underlying Euclidean space nor do
we assume boundedness of the singularity region.
We begin this section by explaining the overall strategy how to estimate

the semigroup difference in the case of more general r. Here we specialize
to operators of the form HM = Ho + M~ .
As in section 2 

r

We recall that TB r denotes the occupation time of the path in r up to
time À,

Furthermore, let Ar be the time the path hits r for the first time,

Annales de I’Institut Henri Poincaré - Physique théorique
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We consider singularity regions r where the set of regular points for r
coincides with the regular point set of the interior of r, that is I-’’ _ 
In this case, Ar (m) is equal to the penetration time (see [Dem/vCa 2]), i. e.

Clearly TB r ((o) &#x3E; 0 implies Ar (co)  A. Therefore

where 8 can be chosen at our convenience ~.)~).
Thus the estimation of the semigroup difference is reduced to the

consideration of the two expressions on the right hand side of (3.2).
The first term on the r. h. s. of (3 . 2) is determined by the probability of

the late arrival of the Brownian motion into a region r. This has its own
interest independent of the final aim in the present article.

Its estimate is the subject of Section 4. There are allowed r forming a
uniform Lipschitz set. The uniform Lipschitz conditions are given in
Definition L and discussed in Section 4. As final result we obtain

For estimating the second term in (3.2) we can use the strong Markov
property

We are able to get rid of the dependence on x in (3.4) if we assume that
r satisfies the following uniform cone condition which is less restrictive
than the uniform Lipschitz conditions used above for (3 . 3) (see e. g. [Wlo],
Section 2.2): ..:.

. ,

Vol. 59, n° 3-1993.
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Under this assumption, the invariance properties of the Wiener measure
imply for each y = co (Ar) 6 ~r

which is independent of 03C9 (0).
Here let us emphasize that unbounded singularity regions are included

in these considerations. Moreover the convergence as M ~ oo follows

immediately by (3.3) and (3. 6).
Thus the second term on the r.h. s. is bounded in terms of the Laplace

transform of (the distribution of) Tt, K, the spending time of the Brownian
motion in the cone K of finite height up to the time E. This part is dealt
with in Section 5. In fact, there we consider cones C of infinite height
instead of K. And we can show (see Theorem 5 . 4)

for any 0   1 and small E.
2

Now we are able to formulate the central result:

THEOREM 3 . l. - Let F be a uni.f’orm Lipschitz set, i. e. let F be given
as described in Definition L (see Section 4, Theorem 4. 2). Suppose Assump-
tion B, and for the sake of a simpler notation take V - 0.

Then we have for any 0   1 .2

for large M.

Proof. - Let K be a standard cone of finite height for r as in (3. 5),
C= { rx ~ ~0, the cone extending K to infinity.

Annales de /’Institut Henri Poincaré - Physique théorique
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Using the above calculations and the main results of Sections 4 and 5

mentioned above, we have for arbitrary 0  y  1-
?

with constants m, m as in Theorem 4. 2.
Now (3 . 4) follows by letting E = M~ with a  0, hence the second asser-

tion using (2 .10) . D

Remarks 3 . 2. - All the results of Section 2 are contained in

Theorem 3.1. In particular, N-body situations are treated to a satisfactory
degree, because the singularity region may be unbounded and the smooth-
ness condition on its boundary is relaxed.

Furthermore, we have a convergence rate for any such uniform Lipschitz
singularity region. For a better convergence rate in a special case see

Lemma 6. 1 however.

4. PROBABILITY OF LATE ARRIVAL

In this section, we provide the estimates needed in Section 3 on the
probability of "late arrival" in F of Brownian motion starting in E, i. e.

where

We start with the situation where the boundary of r is given globally by
a Lipschitz continuous function.

PROPOSITION 4 .1. - Let d &#x3E;_ 2, f : -~ f~ Lipschitz continuous, i. e.
there is an L&#x3E;O for every a, If ~
denotes the set below the graph of f in [Rd,

Vol. 59, n° 3-1993.
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then there is a constant c s. t.

Proof - In the following, let be fixed, and
x=(~,/(~)+M)e~ ~=(~/(~)+~)er arbitrary, 

If a Brownian trajectory (0 starting at xo hits r for the first time in the
time interval (~"8, t), then we know that for
some SE(t-E, t). Thus

Concerning the distance between x and r, we now prove the existence of
a constant s. t.

for some K&#x3E;0, because a H (1- L a)2 + a2 takes its global minimum.
Having completed the proof of (4.5), we now observe that

(dist (x, I-’)) 2 = inf{ y - y’ E Q~d -1, ~~0} ~C~ u ~ 2. After a change of
coordinates, we obtain

(4 . 6) r. h. s. of (4 . 4)

Annales de I’Institut Henri Poincaré - Physique théorique
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Denoting the v-dimensional transition probability kernel by ( . , . ~ . )
and remarking that there is no norming factor corresponding to

we end up with

by Chapman-Kolmogorov’s equation. 0

Judging from the above proof, one should assume r to have a uniform
locally Lipschitz boundary. To this end, we consider tubular neighbor-
hoods of radius I around a = ar = 9X

in which we assume locally a similar Lipschitz condition as in

Proposition 4.1.

DEFINITION L. - We call r a uniform Lipschitz set if there is an l &#x3E; 0
and subsets Ck, k= I, ..., N (N finite or infinite), of whose union

covers al s. t. the following conditions hold:
(LI) (uniform Lipschitz condition)
Up to congruence of each C~ is of the form

with an open set and a Lipschitz continuous function f ’k : 
(with a Lipschitz constant L independent of k), and

(L2) (the Ck must neither be arbitrarily small nor large). If Br (x) denotes
the open ball or radius r around x, then there are constants 1± &#x3E; 0 (inde-
pendent of k) and "centers" mk E i~d s. t. Bl- (mk) c Ck c B1+ (mk).
(L3) (the Ck must not have arbitrarily thin intersections). For each x~~l
there is a k s. t. Bz- (x) c Ck.

Vol. 59, n° 3-1993.
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(L4) (uniform local finiteness). There is a finite constant m s. t. each
x E aj lies in at most m of the sets Ck.

THEOREM 4. 2. - Suppose F to be a uniform Lipschitz set in and let
m be as in Definition L.

Then there are constants c, m s. t.

for 
Before giving the proof of Theorem 4.2, we want to discuss assumptions

and result therein:

Example 4.3. - Surely, neither of the estimates (4.3) and (4.7) is

optimal. For example, if d=1 and r=[0, oo), the distribution of Ar is
known (see e. g. [Kar/Shr]). We obtain

As usual, this result extends to the case of a halfspace in ~.
Since the conditions [(L 1 )-(L4)] in Definition L are somewhat lengthy

and technical, it is worthwhile to note that they are not nearly so restrictive
as they look at a first glance:

Remarks 4 . 4. - a) Let r be R-smooth in the sense of [vdB], i. e. for

any xo E a there are open balls B 1, B2 with radius R s. t. B 1 c X, B2 c r,

Then r fulfils (L1)-(L2).
b) In view of need to be "smooth" in the usual sense but may

very well have peaks as long as the corresponding angles don’t become
arbitrarily small. In particular, any parallelepiped or cone satisfies the

assumptions of Theorem 4. 2.
c) The class of sets r s. t. (4. 7) holds for some constant c is closed with

respect to finite unions.
In particular, the union r of two closed balls or cubes having exactly

one point in common satisfies (4. 7) although r is not an example for the
conditions (L 1 )-(L4) in the first place.

Annales de /’/nstitut Henri Poincaré - Physique théorique



343RATE OF CONVERGENCE FOR LARGE COUPLING LIMITS

Here, parts b) and c) are trivial, and we will supply the proof of
Remark 4 . 4 a) after giving the proof of the main result of this section:

Proof of Theorem 4. 2. - Let xo E ~ be fixed. Then

Using (2 . 9) once again

and

Thus, we only have to prove the desired estimate for

To this end, for x E L ~ ~l let k be as in (L3). Then

Using the transformations (L I ), we see that

just as in the global case (see (4 . 6)). Here, (Ll ) ensures uniformity in k.
If we have xo - x -&#x3E;- ~ xo - mk - x &#x3E;_ ~ xo - mk ~ - l + by (L2) .

On the other hand, if Ak is the congruence map assumed in (L 1 ),
and the sense of Ak-coordinates, then

Vol. 59, n° 3-1993.
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As in the global case, the one-dimensional integral is

In the sum (4.10), we now consider two different cases with respect to k.
In the first place, if &#x3E; 6 l + (i. e. xo is far away from Ck), it is

easily seen that x - x 2 for all x E Ck, allowing us to

return to the full-dimensional transition probability kernel in (4.10). By
inserting unity, we obtain for such a k that the double integral in (4.10)

If, on the other hand,  6/+ (i. e. xo is near C~), we use the
alternative for the maximum in (4 . 10). Then

Annales de /’Institut Henri Poincaré - Physique théorique
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In total, we obtain .

with m as in (L4) and a constant in independent of xo. Indeed, we have
sup # { xo - mk  6 l + ~  + 00 because of (L2) and (L4). In order to
xo

prove this, we assume without loss of generality that balls are defined
with respect to the supremum norm and that V l+ = I+ for some natural
number V.

Consider a point x E [Rd and (pairwise distinct) integers k1, ..., kn s. t.

i  6 l + for i = I , ..., n. Obviously, one can distribute at most

k (6 V)d "balls" of radius 1- onto B6 l + (x) in such a way that each point
of is in at most k of the smaller "balls". Hence

/’~~./Bd 2014 Y E B6 sup 1 + (x) 0

Proof of Remark 4. 4 a. - One can construct the necessary quantities

appearing in (Ll )-(L4), if r is R-smooth: let choose elements

For k fixed, assume w. I. o. g. that the defining balls B1, B~ meeting at
yk are of the form BR «0, ::i:: R)), where 0 in the origin in Obviously,

is given as the graph of a function h : {y E  R/3} - R. If we let

then (L 1 ) is an easy consequence of the mean value theorem and (L2)-
(L4) are trivial. D

Vol. 59, n° 3-1993.
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5. OCCUPATION TIME IN A CONE

The aim of this section is to demonstrate how the method of [Mey] to
study the asymptotic behavior can also be used to estimate the Laplace
transform of (the distribution of) the occupation time

of d-dimensional Brownian motion starting at 0 in a cone C given by

where ff is a closed subset of the unit sphere Sd - 1 in [Rd having a
nonempty interior. In view of our applications in Section 3, it is sufficient
to think 3° to be of the  r ~ -

It is hard to determine the distribution of Tt, c precisely; for example,
to our best knowledge this problem is still open in the easy-looking case
where t = 1 and C== {(~, a quadrant in [R2 (see e. g. p. 108 in
[Mey]).
At the end of this section, we will prove the following quantitative

version of Proposition 4. 3 in [Mey]:

PROPOSITION 5.1. - Let MEN. If q is large enough, then
there is a constant c s. t.

for large n.
By interpolation, we obtain.

PROPOSITION 5. 2. - If q is sufficiently large, there are positive constants
c, 11 s. t.

for small E &#x3E; o.

Proof. - If ~ ~ (0, 1 ), let n be the natural number with tn _ E  1.

From Tf; c  we infer

for 11 sufficiently small. Hence, (5 . 1 ) implies the result. 0

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Since any polynomial is increasing faster than the logarithm at infinity,
we immediately obtain.

COROLLARY 5 . 3. - Let 03B1&#x3E; 0 be arbitrary. Then there are c, 11 &#x3E; 0 s. t.

for small E &#x3E; 0.
The above assertion on how large usually is . for small times enables

us to show how small the Laplace transform of T£, ~ is in certain parameter
regions.

THEOREM 5 . 4. - Let 0   1 . Then there are positive constants c, Eo,Y 
2 

p o

Ko s. t.

Proof - Let ~&#x3E;0 be sufficiently small in the sense of Corollary 5. 3.
Setting for we will use the fact that by (5 . 3) Po-a.e.
coeQo satisfies for large k, where a &#x3E; 0 may be chosen

arbitrarily small and Tk is a shorthand notation for Ttk, c:

On the r. h. s., every single summand is fine with respect to (5 . 4). Thus
we still have to prove that

Vol. 59, n° 3-1993.
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satisfies the desired bound for some K. Letting N=Mr)8~~ we have

via the substitution y = e -’~ "2 _
Thus we have for arbitrary K  1

Hence the result by resubstituting N = ~ M £1 +B1.. D

Problem. - For the halfspace ~~0}? ~ know by the
arcsine law (see e. g. Section 4 . 4 of [Kar/Shr]) that

y

We believe that for the case of Theorem 5.4 the Laplace transform decays
much faster than logarithmically and might be similar to (5 . 6).

Proof of Proposition 5. 1. - In the rest of this section, we will work
our way through [Mey] in order to prove Proposition 5.1. For ease of
reference, we employ Meyre’s notation as introduced in Sections (3. 1),
(3.2) of [Mey]. We recall that the underlying idea is to construct for a

given tn well-chosen random variables ’tn, s. t.

(i ) for all s E «(0), an (ro )],
(ii ) ~n (ro) - in is large.
To this end, choose 6 &#x3E; 0 small enough s. t.

has a nonempty interior and consider the following chain of real numbers,
where qi, q are arbitrary:

Annales de l’lnstitut Henri Poincaré - Physique théorique
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where E1(Fc) is given in terms of the smallest eigenvalue 03BB1 of - _I 2 A (A
being the Laplacian on on with Dirichlet boundary condi-

tions, namely _ 
(v 2 + 2 ~,1 ) 1/2 + v , where v = d - 1.

Letting Cö be the cone in ~d determined the line of the proof is
to show that the following sequence of stopping times

"soon" becomes stationary, i. e. soon after time tn the path co will be found
"far away" from the origin and "safely within" the cone C. Therefore we
consider

The following estimate immediately follows from  pk, k E I~,
for some 03C1~1 2, which is shown on p. 120 of [Mey]:

Thus, the stopping time

(where [~] denotes the largest integer smaller than À) usually has the
following properties for large n:

Furthermore it is bounded from above in the following way:

LEMMA 5 . 5. - For large n

Proof - In the proof of Lemme 3.3 in [Mey] it is shown that

P0(An,p,i)~C|longtn|2 for i = 1, 2, and large n, where
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(note that we - in contrast to Meyre - have chosen q2).
For

we obtain as usual logtn|logtn|q1. Since B ’ (5.9)
follows. D

Due to (5. 8), the stopping time

usually should be much larger than in. In fact

(see the proof of Lemme 3 . 4 in [Mey]) implies

for large n.
In order to utilize (5 . 10) for a lower bound on the occupation time up

to time tn (recall in &#x3E;_ tn), one introduces for n EN the unique number m (n)
s. t.

Now T~ (co) ~ ~ ~,~ ~ ~o (co), implies T~ ~) (co) ~ 2 -~ for large ~2. From
Lemma 5.5 we deduce

for large n.
Obviously
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Thus, if one usually has for large n due to

(5 .11 ). On the other hand, if (5 . 10) usually implies

if n is sufficiently large.

In each of these cases, we conclude /log tn Iq 1. Hence, the
tn

estimates (5. 7), (5 . 10) and (5 . 11 ) now prove Proposition 5 . 1. D

6. ESTIMATES FROM BELOW

Before stating our results concerning lower bounds on semigroup and
resolvent differences, we present a version of Theorem 3 .1 in the special
case of the halfspace, which can easily be treated probabilistically:

Proof - Proceeding as in the general case in Section 3 and using
Example 4. 3 and (5. 6), we have

Letting E = M0152 ))B, we obtain the best result for a = - 1 , 13 = + 2 . This
3 3

proves the first assertion. The resolvent estimate follows by
integration. D

This example early measures the quality of the lower bounds in the rest
of this section. For the lower bounds, we return to the situation of

Assumption B, i. e. V Kato class and U = xr.
We recall i. e. it is sufficient to bound the operator

norm from below. Moreover, let P denote multiplication by xr in L2 
Employing the obvious notations for the resolvent of HM and H~ respec-
tively and suppressing the dependence on the point in the resolvent set

Vol. 59, n° 3-1993.



352 M. DEMUTH, F. JESKE AND W. KIRSCH

for a moment, we have

Hence

In particular

and

LEMMA 6 . 2. - In addition to Assumption B assume sup V (x) b. If
x

- 

a E p (Ho + V) is sufficiently small, we have as M - 00

B "

Proo_ f : - For any B c [Rd with finite Lebesgue measure and any ball
03930 ~ r we may estimate

Choosing B:= {j~e~ dist (y, I-’o)  1 ~ we note that

and obtain for sufficiently large M

Recalling (6 . 2), this completes the proof of (6.4). D

LEMMA 6. 3. - In addition to Assumption B assume sup V (x)  b and
x

there is a xo E ~0393 s. t. for some cones K2 of finite height and with vertex
xo one has K1 c F, xo ~ c L.
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If - a E p (H o + V) is su fficien tly small, then

Proof - In the course of the calculations, we will choose subsets
B c Eo ~ E and Fo c r of finite Lebesgue measure.
For any such candidate we have similar to the proof of Lemma 6 . 2

Now we choose B = {y E ~ dist ( y, ro)  1 } and obtain as in the proof
of Lemma 6. 2

In principle, we let 03A30, 03930 be the cones in the assumption on ~0393. In order
/ .

to estimate p x, M - ) appropriately from below, we rather integrate over
B - /

the ,-dependent sets
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Then for any such M, jc, we have x, M - ~ c03BB-(d/2)e-1. Hence for

large M

LEMMA 6 . 4. - In addition to Assumption B assume sup v (x)  b and
x

there is a cone K of finite height h with vertex xo Ear s. t. K c r. Then

Proof - Since the proofs of these estimates are similar to one another
and to the preceding Lemmas, we only give some details concerning the
first semigroup difference:

Thus

completing the proof of the first assertion (cf proof of Lemma 6. 2). D
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