A Nekhoroshev-type theorem for the Pauli-Fierz model of classical electrodynamics
Annales de l'I.H.P. Physique théorique, Volume 60 (1994) no. 3, p. 339-371
@article{AIHPA_1994__60_3_339_0,
     author = {Bambusi, Dario},
     title = {A Nekhoroshev-type theorem for the Pauli-Fierz model of classical electrodynamics},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {60},
     number = {3},
     year = {1994},
     pages = {339-371},
     zbl = {0805.35130},
     mrnumber = {1281651},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1994__60_3_339_0}
}
Bambusi, Dario. A Nekhoroshev-type theorem for the Pauli-Fierz model of classical electrodynamics. Annales de l'I.H.P. Physique théorique, Volume 60 (1994) no. 3, pp. 339-371. http://www.numdam.org/item/AIHPA_1994__60_3_339_0/

[1] D. Bambusi and L. Galgani, Some Rigorous Results on the Pauli-Fierz Model of Classical Electrodynamics, Ann. Inst. H. Poincaré, Physique théorique, Vol. 58, 1993, pp. 155-171. | Numdam | MR 1217117 | Zbl 0769.35057

[2] L. Galgani, C. Angaroni, L. Forti, A. Giorgilli and F. Guerra, Classical Electrodynamics as a Nonlinear Dynamical System, Phys. Lett. A, Vol. 139, 1989, pp. 221-230.

[3] W. Pauli and M. Fierz, Zur Theorie der Emission langwelliger Lichtquanten, Nuovo Cimento, Vol. 15, 1938, pp. 167-188. | JFM 64.1487.01

[4] M. Abraham, Prinzipien der Dynamik des Elektrons, Ann. der Phys., Vol. 10, 1903, pp. 105-179. | JFM 34.0915.02

[5] M. Abraham, Theorie der Elektrizität, Vol. II, Tebeuner, Leipzig-Berlin 1908. | JFM 39.0904.08

[6] A. Einstein, Zum gegenwärtigen Stand des Strahlungsproblems, Phys. Zeit., Vol. 6, 1909, pp. 185-186. | JFM 40.0985.01

[7] L. Landau and E. Lifchitz, Théorie des champs, 3rd Ed., MIR, Moscow, 1970.

[8] J.D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York, 1975. | Zbl 0997.78500

[9] G.A. Schott, The Electromagnetic Field of a Moving Uniformly and Rigidly Electrified Sphere and its Radiationless Orbits, Phyl. Mag., Vol. 15, 1933, pp. 752-761. | Zbl 0006.38005

[10] D. Bohm and M. Weinstein, The Self Oscillations of a Charged Particle, Phys. Rev., Vol. 74, 1948, pp. 1789-1798. | Zbl 0031.37805

[11] W.T. Grandy and A. Aghazadeh, Radiative Corrections for Extended Charged Particles in Classical Electrodynamics, Ann. of Physics, Vol. 142, 1982, pp. 284-298. | MR 678486

[12] E. Zehnder, Siegel Linearization Theorem in Infinite Dimension, Manuscripta Math., Vol. 23, 1978, pp. 363-371. | MR 501144 | Zbl 0374.47037

[13] N.V. Nikolenko, The Method of Poincaré Normal Form in Problems of Integrability of Equations of Evolution Type, Uspekhi Mat. Nauk., Vol. 41, 5, 1986, pp. 109-152; Russ. Math. Surveys, Vol. 41, 5, 1986, pp. 63-114. | MR 878327 | Zbl 0632.35026

[14] J. Fröhlich, T. Spencer and C.E. Wayne, Localization in Disordered, Nonlinear Dynamical Systems, J. Stat. Phys., Vol. 42, 1986, pp. 247-274. | MR 833019 | Zbl 0629.60105

[15] M. Vittot and J. Bellissard, Invariant Tori for an Infinite Lattice of Coupled Classical Rotators, Preprint, 1985.

[16] S.B. Kuksin, Hamiltonian Perturbations of Infinite-dimensional Linear Systems with Imaginary Spectrum, Funktsional. Anal. i Prilozhen, Vol. 21, 3, 1987, pp. 22-37; Funct. Anal. Appl., Vol. 21, 1987. | MR 911772 | Zbl 0716.34083

[17] C.E. Wayne, Periodic and Quasi-periodic Solutions of Nonlinear Wave Equation via KAM Theory, Commun. Math. Phys., Vol. 127, 1990, pp. 479-528. | MR 1040892 | Zbl 0708.35087

[18] J. Pöschel, Small Divisors with Spatial Structure in Infinite Dimensional Hamiltonian Systems, Commun. Math. Phys., Vol. 127, 1990, pp. 351-393. | MR 1037110 | Zbl 0702.58065

[19] M. Yu. DENISOV, Reduction of the Nonlinear Diffusion Equation to Linear Form, Funktional. Anal. i Prilozhen, Vol. 19, 1, 1985, pp. 69-70; Function. Anal. Appl., Vol. 19, 1985, pp. 57-58. | MR 783711 | Zbl 0657.34041

[20] M. Yu. Denisov, Reduction of some Nonlinear Evolution Equation with Continuous Spectrum to Linear Part, Differentsial'nye Uravneniya, Vol. 21, 1985, pp. 464-473; Differential equations, Vol. 21, 1985, pp. 312-319. | MR 785456 | Zbl 0566.45011

[21] G. Benettin, J. Fröhlich and A. Giorgilli, A Nekhoroshev-type Theorem for Hamiltonian Systems with Infinitely Many Degrees of Freedom, Commun. Math. Phys., Vol. 119, 1988, pp. 95-108. | MR 968482 | Zbl 0825.58011

[22] S.B. Kuksin, An Averaging Theorem for Distributed Conservative Systems and its Application to Von Karman's Equation, PMM U.S.S.R., Vol. 53, 1989, pp. 150-157. | MR 1004397 | Zbl 0722.73039

[23] D. Bambusi and A. Giorgilli, Exponential stability of states close to resonance in infinite dimensional hamiltonian systems, Jour. Stat. Phys., Vol. 71, 1993. | MR 1219023 | Zbl 0943.82549

[24] G. Benettin, L. Galgani and A. Giorgilli, Realization of Holonomic Constraints and Freezing of High Frequency Degrees of Freedom in the Light of Classical Perturbation Theory, Part II, Commun. Math. Phys., Vol. 121, 1989, pp. 557-601. | MR 990993 | Zbl 0679.70015

[25] J.-L. Lions, Problèmes aux Limites, Presses de l'Université de Montréal, 1962.

[26] R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Masson, Paris, 1985. | Zbl 0642.35001

[27] M. Born, Ann. d. Phys., Vol. 30, 1, 1909. | JFM 40.0930.02

[28] J.S. Nodvik, A covariant Formulation of Classical Electrodynamics for Charges of Finite Extension, Ann. of Phys., Vol. 28, 1964, pp. 225-319. | MR 168327 | Zbl 0119.22203

[29] A. Giorgilli and L. Galgani, Formal Integrals for an Autonomous Hamiltonian System Near an Equilibrium Point, Cel. Mech., Vol. 17, 1978, pp. 267-280. | MR 504624 | Zbl 0387.70022

[30] J. Mujica, Complex Analysis in Banach Spaces, North Holland Mathematical Studies 120, Amsterdam, 1986. | MR 842435 | Zbl 0586.46040