Jet bundle geometry, dynamical connections, and the inverse problem of lagrangian mechanics
Annales de l'I.H.P. Physique théorique, Volume 61 (1994) no. 1, p. 17-62
@article{AIHPA_1994__61_1_17_0,
     author = {Massa, Enrico and Pagani, Enrico},
     title = {Jet bundle geometry, dynamical connections, and the inverse problem of lagrangian mechanics},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {61},
     number = {1},
     year = {1994},
     pages = {17-62},
     zbl = {0813.70004},
     mrnumber = {1303184},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1994__61_1_17_0}
}
Massa, Enrico; Pagani, Enrico. Jet bundle geometry, dynamical connections, and the inverse problem of lagrangian mechanics. Annales de l'I.H.P. Physique théorique, Volume 61 (1994) no. 1, pp. 17-62. http://www.numdam.org/item/AIHPA_1994__61_1_17_0/

[1] M. Crampin, G.E. Prince and G. Thompson, A Geometrical Version of the Helmholtz Conditions in Time-Dependent Lagrangian Dynamics, J. Phys. A: Math. Gen., Vol. 17, 1984, pp. 1437-1447. | MR 748776 | Zbl 0545.58020

[2] E. Masssa and E. Pagani, Classical Dynamics of Non-holonomic Systems: a Geometric Approach, Ann. Inst. H. Poincaré, Vol. 55, 1991, pp. 511-544. | Numdam | MR 1130215 | Zbl 0731.70012

[3] M. De León and P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North Holland, Amsterdam, 1989. | MR 1021489 | Zbl 0687.53001

[4] D.J. Saunders, The Geometry of Jet Bundles, London Mathematical Society, Lecture Note Series 142, Cambridge University Press, 1989. | MR 989588 | Zbl 0665.58002

[5] W. Sarlet, Symmetries, First Integrals and the Inverse Problem of Lagrangian Mechanics, J. Phys. A: Math. Gen., Vol. 14, 1981, pp. 2227-2238. | MR 628366 | Zbl 0484.70019

[6] W. Sarlet and F. Cantrijn, Symmetries, First Integrals and the Inverse Problem of Lagrangian Mechanics: II, J. Phys. A: Math. Gen., Vol. 16, 1983, pp. 1383-1396. | MR 707383 | Zbl 0542.70020

[7] M. Crampin, F. Cantrijn and W. Sarlet, Pseudo-Symmetries, Noether's Theorem and the Adjoint Equation, J. Phys. A: Math. Gen., Vol. 20, 1987, pp. 1365-1376. | MR 893325 | Zbl 0623.58045

[8] M. Crampin, G.E. Prince and W. Sarlet, Adjoint Symmetries for Time-Dependent Second Order Equations, J. Phys. A: Math. Gen., Vol. 23, 1990, pp. 1335-1347. | MR 1049734 | Zbl 0713.58018

[9] G. Marmo, E.J. Saletan, A. Simoni and B. Vitale, Dynamical Systems, John Wiley & Sons, Chichester, 1985. | Zbl 0592.58031

[10] M. Crampin, On the Differential Geometry of the Euler-Lagrange Equations, and the Inverse Problem of Lagrangian Dynamics, J. Phys. A: Math. Gen., Vol. 14, 1981, pp. 2567-2575. | MR 629315 | Zbl 0475.70022

[11] M. Crampin, Tangent Bundle Geometry for Lagrangian Dynamics, J. Phys. A: Math. Gen., Vol. 16, 1983, pp. 3755-3772. | MR 727054 | Zbl 0536.58004

[12] W. Sarlet, The Helmholtz Condition Revisited. A New Approach to the Inverse Problem of Lagrangian Dynamics, J. Phys. A: Math. Gen., Vol. 15, 1982, pp. 1503-1517. | MR 656831 | Zbl 0537.70018

[13] G. Morandi, C. Ferrario, G. Lo Vecchio, G. Marmo and C. Rubano, The Inverse Problem in the Calculus of Variations and the Geometry of the Tangent Bundle, Phys. Reports, Vol. 188, 1990, pp. 147-284. | MR 1050526

[14] M. Henneaux and L.C. Shepley, Lagrangians for Spherically Symmetric Potentials, J. Math. Phys., Vol. 23, 1982, pp. 2101-2107. | MR 680007 | Zbl 0507.70022

[15] G. Caviglia, Dynamical Symmetries, First Integrals and the Inverse Problem of Lagrangian Dynamics, Inverse Problems, Vol. 1, 1985, pp. 13-17. | MR 792585 | Zbl 0593.70002

[16] G. Caviglia, Helmholtz Conditions, Covariance, and Invariance Identities, Int. J. Theor. Phys., Vol. 24, 1985, pp. 377-390. | MR 793846 | Zbl 0571.70017

[17] F. Cantrijn, M. Crampin and W. Sarlet, Evading the Inverse Problem for Second Order Ordinary Differential Equations by Using Additional Variables, Inverse Problems, Vol. 3, 1987, pp. 51-63. | MR 875317 | Zbl 0616.34008

[18] J.F. Cariñena and E. Martinez, Symmetry Theory and Lagrangian Inverse Problem for Time-Dependent Second Order Differential Equations, J. Phys. A: Math. Gen., Vol. 22, 1989, pp. 2659-2665. | MR 1003903 | Zbl 0709.58015

[19] W. Sarlet, Note on Equivalent Lagrangians and Symmetries, J. Phys. A: Math. Gen., Vol. 16, 1983, pp. 229-233. | MR 707376 | Zbl 0514.58014

[20] G. Marmo, N. Mukunda and J. Samuel, Dynamics and Symmetries for Constrained Systems: A Geometric Analysis, La Rivista del Nuovo Cimento, Vol. 6, 1983, 2, pp. 1-62. | MR 729476

[21] F. Cantrijn, J.F. Cariñena, M. Crampin and L.A. Ibort, Reduction of Degenerate Lagrangian Systems, J. G. P., Vol. 3, 1986, pp. 353-400. | MR 894631 | Zbl 0621.58020

[22] J.F. Cariñena and L.A. Ibort, Geometric Theory of the Equivalence of Lagrangians for Constrained Systems, J. Phys. A: Math. Gen., Vol. 18, 1985, pp. 3335-3341. | MR 817862 | Zbl 0588.58020

[23] G. Giachetta, Jet Methods in Non-holonomic Mechanics, J. Math. Phys., Vol. 33, 1992, pp. 1652-1665. | MR 1158984 | Zbl 0758.70010

[24] H. Helmholtz, Über die Physikalische Bedeutung des Princips der Kleisten Wirkung, J. Reine Angew. Math., Vol. 100, 1887, p. 137. | JFM 18.0941.01

[25] G. Darboux, Leçons sur la théorie générale des surfaces, Gauthier-Villars, Paris, 1894.

[26] J. Douglas, Solution of the Inverse Problem of the Calculus of Variations, Trans. Amer. Math. Soc., Vol. 30, 1941, pp. 71-128. | JFM 67.1038.01 | MR 4740 | Zbl 0025.18102

[27] M. Henneaux, Equations of Motion, Commutation Relations and Ambiguities in the Lagrangian Formalism, Ann. Phys., Vol. 140, 1982, pp. 45-64. | MR 660925 | Zbl 0501.70020

[28] J.F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, New York, 1978. | MR 517402 | Zbl 0418.35028

[29] C. Godbillon, Géométrie différentielle et mécanique analytique, Hermann, Paris, 1969. | MR 242081 | Zbl 0174.24602

[30] S. Sternberg, Lectures on Differential Geometry, Prentice Hall, Englewood Cliffs, New Jersey, 1964. | MR 193578 | Zbl 0129.13102

[31] L. Mangiarotti and M. Modugno, Fibered Spaces, Jet Spaces and Connections for Field Theories, Proceedings of the International Meeting on Geometry and Physics, Florence, October 12-15, 1982, Pitagora, Bologna, 1983, pp. 135-165. | MR 760841 | Zbl 0539.53026

[32] P. Libermann and C.M. Marle, Symplectic Geometry and Analytical Mechanics, D. Reidel Publ. Comp., Dordrecht, 1987. | MR 882548 | Zbl 0643.53002

[33] P.L. Garciá, The Poincaré-Cartan Invariant in the Calculus of Variations, Symposia Mathematica, Vol. 14, 1974, pp. 219-246. | MR 406246 | Zbl 0303.53040

[34] S. Kobayashi and K. Nomizu, Foundations of Differentiel Geometry, J. Wiley & Sons, New York, 1963. | Zbl 0119.37502

[35] J. Grifone, Estructure presque tangente et connexions I, Ann. Inst. Fourier, Grenoble, Vol. 22, 3, 1972, pp. 287-334. | Numdam | MR 336636 | Zbl 0219.53032

[36] J. Grifone, Estructure presque tangente et connexions II, Ann. Inst. Fourier Grenoble, Vol. 22, 4, 1972, pp. 291-338. | Numdam | MR 341361 | Zbl 0236.53027

[37] W. Sarlet, F. Cantrijn and M. Crampin, A New Look at Second Order Equations and Lagrangian Mechanics, J. Phys. A: Math. Gen., Vol. 17, 1984, pp. 1999-2009. | MR 763792 | Zbl 0542.58011

[38] M. Crampin and G.E. Prince, Generalizing Gauge Variance for Spherically Symmetric Potentials, J. Phys. A: Math. Gen., Vol. 18, 1985, p. 2167-2175 | MR 804315 | Zbl 0578.58014