Local decay estimates for Schrödinger operators with long range potentials
Annales de l'I.H.P. Physique théorique, Volume 61 (1994) no. 2, p. 135-151
@article{AIHPA_1994__61_2_135_0,
     author = {Ozawa, Tohru},
     title = {Local decay estimates for Schr\"odinger operators with long range potentials},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {61},
     number = {2},
     year = {1994},
     pages = {135-151},
     zbl = {0812.35111},
     mrnumber = {1311061},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1994__61_2_135_0}
}
Ozawa, T. Local decay estimates for Schrödinger operators with long range potentials. Annales de l'I.H.P. Physique théorique, Volume 61 (1994) no. 2, pp. 135-151. http://www.numdam.org/item/AIHPA_1994__61_2_135_0/

[1] W.O. Amrein, M.B. Cibils, K.B. Sinha, Configuration space properties of the S-matrix and time delay in potential scattering, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 47, 1987, pp. 367-382. | Numdam | MR 933683 | Zbl 0657.35101

[2] H.L. Cycon, An upper bound for the local time-decay of scattering solutions for the Schrödinger equation with Coulomb potential, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 39, 1983, pp. 385-392. | Numdam | MR 733689 | Zbl 0538.35025

[3] H.L. Cycon, P.A. Perry, Local time-decay of high energy scattering states for the Schrödinger equation, Math. Z., Vol. 188, 1984, pp. 125-142. | MR 767370 | Zbl 0538.35026

[4] J. Ginibre, T. Ozawa, Long range scattering for non linear Schrödinger and Hartree equations in space dimension n ≥ 2, Commun. Math. Phys., Vol. 151, 1993, pp. 619-645. | MR 1207269 | Zbl 0776.35070

[5] N. Hayashi, T. Ozawa, Time decay for some Schrödinger equations, Math. Z., Vol. 200, 1989, pp. 467-483. | MR 987581 | Zbl 0646.35020

[6] N. Hayashi, T. Ozawa, Lower bounds for order of decay or of growth in time for solutions to linear and non-linear Schrödinger equations, Publ. RIMS, Kyoto Univ., Vol. 25, 1989, pp. 847-859. | MR 1045995 | Zbl 0714.35014

[7] I.W. Herbst, Spectral theory of the operator (p2 + m2)1/2 - Ze2/r, Commun. Math. Phys., Vol. 53, 1977, pp. 285-294. | MR 436854 | Zbl 0375.35047

[8] H. Isozaki, Decay rates of scattering states for Schrödinger operators, J. Math. Kyoto Univ., Vol. 26, 1986, pp. 595-603. | MR 864463 | Zbl 0622.35055

[9] A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions, Results in L2 (Rm), m ≥ 5, Duke Math. J., Vol. 47, 1980, pp. 57-80. | MR 563367 | Zbl 0437.47009

[10] A. Jensen, Propagation estimates for Schrödinger type operators, Trans. Amer. Math. Soc., Vol. 291, 1985, pp. 129-144. | MR 797050 | Zbl 0577.35089

[11] A. Jensen, T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., Vol. 46, 1979, pp. 583-611. | MR 544248 | Zbl 0448.35080

[12] A. Jensen, E. Mourre, P. Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 41, 1984, pp. 207-225. | Numdam | MR 769156 | Zbl 0561.47007

[13] A. Jensen, S. Nakamura, Mapping properties of wave and scattering operators for two-body Schrödinger operators, Letters in Math. Phys., Vol. 24, 1992, pp. 295-305. | MR 1172457 | Zbl 0761.35074

[14] A. Mohapatra, K.B. Sinha, W.O. Amrein, Configuration space properties of the scattering operator and time delay for potentials decaying like |x|-α, α > 1, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 57, 1992, pp. 89-113. | Numdam | MR 1176359 | Zbl 0776.35043

[15] M. Murata, Asymptotic expansions in time for solutions of Schrödinger type equations, J. Funct. Anal., Vol. 49, 1982, pp. 10-56. | MR 680855 | Zbl 0499.35019

[16] T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Commun. Math. Phys., Vol. 139, 1991, pp. 479-493. | MR 1121130 | Zbl 0742.35043

[17] P. Perry, Scattering theory by the Enss method, Math. Reports, Vol. 1, 1983, pp. 1-347. | MR 752694 | Zbl 0875.47001

[18] M. Reed, B. Simon, Methods of Modern Mathematical Physics III. Scattering Theory, Academic Press, New York, 1979. | MR 529429 | Zbl 0405.47007

[19] D.R. Yafaev, Spectral properties of the Schrödinger operator with a potential having a slow falloff, Funct. Anal. Appl., Vol. 16, 1982, pp. 280-286. | MR 684126 | Zbl 0518.47032

[20] D.R. Yafaev, The low energy scattering for slowly decreasing potentials, Commun. Math. Phys., Vol. 85, 1982, pp. 177-196. | MR 675998 | Zbl 0509.35065