@article{AIHPA_1994__61_4_411_0, author = {Bachelot, Alain}, title = {Asymptotic completeness for the {Klein-Gordon} equation on the {Schwarzschild} metric}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {411--441}, publisher = {Gauthier-Villars}, volume = {61}, number = {4}, year = {1994}, mrnumber = {1311537}, zbl = {0809.35141}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1994__61_4_411_0/} }
TY - JOUR AU - Bachelot, Alain TI - Asymptotic completeness for the Klein-Gordon equation on the Schwarzschild metric JO - Annales de l'I.H.P. Physique théorique PY - 1994 SP - 411 EP - 441 VL - 61 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1994__61_4_411_0/ LA - en ID - AIHPA_1994__61_4_411_0 ER -
%0 Journal Article %A Bachelot, Alain %T Asymptotic completeness for the Klein-Gordon equation on the Schwarzschild metric %J Annales de l'I.H.P. Physique théorique %D 1994 %P 411-441 %V 61 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPA_1994__61_4_411_0/ %G en %F AIHPA_1994__61_4_411_0
Bachelot, Alain. Asymptotic completeness for the Klein-Gordon equation on the Schwarzschild metric. Annales de l'I.H.P. Physique théorique, Tome 61 (1994) no. 4, pp. 411-441. http://archive.numdam.org/item/AIHPA_1994__61_4_411_0/
[1] A Class of Analytic Perturbations for one Body Schrödinger Hamiltonians, Comm. Math. Phys. Vol. 22, 1971, pp. 269-279. | MR | Zbl
and ,[2] Gravitational Scattering of Electromagnetic Field by Schwarzschild Black-Hole, Ann. I.H.P.. Physique théorique, Vol. 54, 1991, pp. 261-320. | Numdam | MR | Zbl
,[3] Scattering of Electromagnetic Field by De Sitter-Schwarzschild Black-Hole, in Non Linear Hyperbolic Equations and Field Theory, Research Notes in Math, Vol. 253, 1992, Pitman. | Zbl
,[4] Les résonances d'un trou noir de Schwarschild, Ann I.H.P. Physique théorique, Vol. 59, 1993, pp. 3-68. | Numdam | MR | Zbl
and ,[5] Équation non linéaire de Klein-Gordon dans des métriques de type Schwarzschild, C.R. Acad. Sci. Paris, T. 316, Série I, 1993, pp. 1047-1050. | MR | Zbl
and ,[6] General Principles of Quantum Field Theory, Kluwer Academic Publischers, Dordrecht, 1990. | MR | Zbl
, , and ,[7] One Dimensional Schrödinger Operators with Random or Deterministic Potentials: New Spectral Types, J. Func. Anal., Vol. 51, 1983, pp. 229-258. | MR | Zbl
,[8] On the Decoupling of Finite Singularities from the Question of Asymptotic Completeness in two Body Quantum System, J. Func. Anal., Vol. 23, 1976, pp. 218-238. | MR | Zbl
and ,[9] Scattering for the Wave Equation on the Schwarzschild Metric, Gen. Rel. Grav. Vol. 17, 1985, pp. 353-369. | MR | Zbl
,[10] Scattering for Massive Scalar Fields on Coulomb Potentials and Schwarzschild metrics, Class. Quantum Grav., Vol. 3, 1986, pp. 71-80. | MR | Zbl
and ,[11] Classical and Quantum Scattering Theory for Linear scalar fields on the Schwarzschild Metric I, Ann. Phys., Vol. 175, 1987, pp. 366-426. | MR | Zbl
and ,[12] Classical and Quantum Scattering Theory for Linear Scalar Fields on the Schwarzschild Metric II, J. Math. Phys., Vol. 27, 1986, pp. 2520-2525. | MR | Zbl
and ,[ 13] Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966. | MR | Zbl
,[14] A Uniqueness result in the Segal-Weinless Approach to Linear Bose Fileds, J. Math. Phys., Vol. 20, 1979, pp. 1712-1713. | MR
,[15] The Double-Wedge Algebra for Quantum Fields on Schwarzschild and Minkowski Spacetimes, Commun. Math. Phys., Vol. 100, 1985, pp. 57-81. | MR | Zbl
,[16] Scattering theory for Schrödinger Operators with Long Range Potentials, I, Abstract Theory, J. Math., Soc. Japan, Vol. 29, 1977, pp. 665-691. | MR | Zbl
,[17] Scattering Theory for Schrödinger Operators with Long Range potentials, II, Spectral and Scattering Theory, J. Math. Soc. Japan, Vol. 30, 1978, pp. 603-632. | MR | Zbl
,[18] Équation non linéaire de Klein-Gordon et système de Dirac dans des métriques de type Schwarzschild, Thèse de Doctorat, Université Bordaux-I, 1994.
,[19] Methods of Modern Mathematical Physics, Vol. II, III, 1975, 1978, Academic Press.
and ,[20] Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971. | MR | Zbl
and ,[21] Existence and Uniqueness of the Vaccum for Linear Quantized Fields, J. Funct. Anal., T. 4, 1969, pp. 350-379. | MR | Zbl
,