@article{AIHPA_1995__62_4_401_0, author = {Vodev, G.}, title = {Sharp bounds on the number of resonances for symmetric systems}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {401--407}, publisher = {Gauthier-Villars}, volume = {62}, number = {4}, year = {1995}, mrnumber = {1343784}, zbl = {0841.35078}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1995__62_4_401_0/} }
TY - JOUR AU - Vodev, G. TI - Sharp bounds on the number of resonances for symmetric systems JO - Annales de l'I.H.P. Physique théorique PY - 1995 SP - 401 EP - 407 VL - 62 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1995__62_4_401_0/ LA - en ID - AIHPA_1995__62_4_401_0 ER -
Vodev, G. Sharp bounds on the number of resonances for symmetric systems. Annales de l'I.H.P. Physique théorique, Tome 62 (1995) no. 4, pp. 401-407. http://archive.numdam.org/item/AIHPA_1995__62_4_401_0/
[1] Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity, Asympt. Anal., to appear. | MR | Zbl
and ,[2] Polynomial bounds on the distribution of poles in scattering by an obstacle, Joumées Equations aux Dérivées partielles, Saint-Jean de Monts, 1984. | Numdam | Zbl
,[3] Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc., Vol. 4, 1991, pp. 729-769. | MR | Zbl
and ,[4] Polynomial bounds on the number of scattering poles for symmetric systems, Ann. Inst. H. Poincaré (Physique Théorique), Vol. 54, 1991, pp. 199-208. | Numdam | MR | Zbl
,[5] Sharp polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in Rn, Math. Ann., Vol. 291, 1991, pp. 39-49. | MR | Zbl
,[6] Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Commun. Math. Phys., Vol. 146, 1992, pp. 205-216. | MR | Zbl
,[7] Sharp bounds on the number of scattering poles in even-dimensional spaces, Duke Math. J., Vol. 74, 1994, pp. 1-17. | MR | Zbl
,[8] Sharp polynomial bounds on the number of scattering poles, Duke Math. J., Vol. 59, 1989, pp. 311-323. | MR | Zbl
,