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Pole-factorization theorem

in quantum electrodynamics

Henry P. STAPP
Lawrence Berkeley Laboratory, University of
California, Berkeley, California 94720, U.S.A.

Ann. Inst. Henri Poincaré,

Vol. 64, n° 4, 1996, Physique theorique

ABSTRACT. - In quantum electrodynamics a classical part of the S-matrix
is normally factored out in order to obtain a quantum remainder that can
be treated perturbatively without the occurrence of infrared divergences.
However, this separation, as usually performed, introduces spurious large-
distance effects that produce an apparent breakdown of the important
correspondence between stable particles and poles of the S-matrix, and,
consequently, lead to apparent violations of the correspondence principle
and to incorrect results for computations in the mesoscopic domain lying
between the atomic and classical regimes. An improved computational
technique is described that allows valid results to be obtained in this

domain, and that leads, for the quantum remainder, in the cases studied,
to a physical-region singularity structure that, as regards the most singular
parts, is the same as the normal physical-region analytic structure in theories
in which all particles have non-zero mass. The key innovations are to define
the classical part in coordinate space, rather than in momentum space, and
to define there a separation of the photon-electron coupling into its classical
and quantum parts that has the following properties: 1) The contributions
from the terms containing only classical couplings can be summed to
all orders to give a unitary operator that generates the coherent state

that corresponds to the appropriate classical process, and 2) The quantum
remainder can be rigorously shown to exhibit, as regards its most singular
parts, the normal analytic structure.
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480 H. P. STAPP

RESUME. - En electrodynamique quantique, il est d’usage de separer
par factorisation une partie dite classique de la matrice S afin d’ obtenir
une contribution residuelle quantique qui soit traitable perturbativement
sans production de divergences infrarouges. Cependant, telle qu’ elle est
realisee habituellement, cette separation introduit des effets pervers a grande
distance se manifestant par une suppression apparente de la correspondance
importante entre les particules stables et les poles de la matrice S. 11 en
resulte alors des violations apparentes du principe de correspondance et
des resultats incorrects dans les calculs relatifs au domaine mesoscopique,
intermediaire entre Fechelle atomique et Fechelle de la physique classique.
Nous decrivons ici une methode de calcul plus avantageuse permettant
d’ obtenir des resultats valables dans Ie domaine mentionne. Dans les cas

que nous avons etudies, la contribution residuelle quantique obtenue par
cette methode possede une structure de singularites dans la region physique
dont les parties les plus singulieres sont les memes que celles de la structure
analytique normale pour la region physique dans les theories sans particules
de masse nulle. Les caracteristiques nouvelles de cette methode consistent
a introduire la partie classique dans les variables d’espace-temps plutot
que dans l’espace des impulsions et a demur ainsi une separation de
1’ interaction photon-electron en ses parties classique et quantique possedant
les proprietes suivantes : 1 ) Les contributions provenant de termes contenant
seulement des couplages classiques peuvent etre resommees a tous les
ordres pour donner un operateur unitaire engendrant Fetat coherent qui
decrit Ie processus classique correspondant, et 2) La contribution residuelle
quantique fait apparaitre de fagon rigoureuse la structure analytique normale,
quant a ses parties les plus singulieres.

1. INTRODUCTION

The pole-factorization property is the analog in quantum theory of the
classical concept of the stable physical particle. This property has been
confirmed in a variety of rigorous contexts 1,2,3 for theories in which the
vacuum is the only state of zero mass. But calculations4,5,6 have indicated
that the property fails in quantum electrodynamics, due to complications
associated with infrared divergences. Specifically, the singularity associated
with the propagation of a physical electron has been computed to be not
a pole. Yet if the mass of the physical electron were m and the dominant
singularity of a scattering function at p2 = m2 were not a pole then
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481POLE-FACTORIZATION THEOREM IN QUANTUM ELECTRODYNAMICS

physical electrons would, according to theory, not propagate over laboratory
distances like stable particles, contrary to the empirical evidence.

This apparent difficulty with quantum electrodynamics has been

extensively studied7,8,9, but not fully clarified. It is shown here, at least in
the context of a special case that is treated in detail, that the apparent failure
in quantum electrodynamics of the classical-type spacetime behaviour of
electrons and positrons in the macroscopic regime is due to approximations
introduced to cope with infrared divergences. Those divergences are treated
by factoring out a certain classical part, before treating the remaining
part perturbatively. It can be shown, at least within the context of the

case examined in detail, that if an accurate classical part of the photonic
field is factored out then the required correspondence-principle and pole-
factorization properties do hold. The apparent failure of these latter two
properties in references 4 through 7 are artifacts of approximations that
are not justified in the context of the calculation of macroscopic spacetime
properties: some factors exp ikx are replaced by substitutes that introduce
large errors for small 1~ but very large x .

The need to treat the factor exp approximately arises from the fact
that the calculations are normally carried out in momentum space, where
no variable x occurs. The present approach is based on going to a mixed
representation in which both ~ and 1~ appear. This is possible because the
variable k refers to photonic degrees of freedom whereas the variable x
refers to electronic degrees of freedom.

To have a mathematically well defined starting point we begin with

processes that have no charged particles in the initial or final states: the

passage to processes where charged particles are present initially or finally
is to be achieved by exploiting the pole-factorization property that can be
proved in the simpler case considered first. To make everything explicit we
consider the case where a single charged particle runs around a spacetime
closed loop: in the Feynman coordinate-space picture the loop passes
through three spacetime points, xl, x2, and x3, associated with, for example,
an interaction with a set of three localized external disturbances. Eventually
there will be an integration over these variables. The three regions are to be
far apart, and situated so that a triangular electron/positron path connecting
them is physically possible. To make the connection to momentum space,
and to the pole-factorization theorem and correspondence principle, we
must study the asymptotic behaviour of the amplitude as the three regions
are moved apart.
Our procedure is based on the separation defined in reference 11 of

the electromagnetic interaction operator into its "classical" and "quantum"
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parts. This separation is made in the following way. Suppose we first
make a conventional energy-momentum-space separation of the (real and
virtual photons) into "hard" and "soft" photons, with hard and soft photons
connected at "hard" and "soft" vertices, respectively. The soft photons can
have small energies and momenta on the scale of the electron mass, but
we shall not drop any "small" terms. Suppose a charged-particle line runs
from a hard vertex x- to a hard vertex x+. Let soft photon j be coupled
into this line at point and let the coordinate variable x~ be converted by
Fourier transformation to the associated momentum variable Then the
interaction operator is separated into its "classical" and "quantum"
parts by means of the formula

where

z = x+ - x-, and /kj = 
This separation of the interaction allows a corresponding separation of

soft photons into "classical" and "quantum" photons: a "quantum" photon
has a quantum coupling on at least one end; all other photons are called
"classical" photons.
The full contribution from all classical photons is represented in an

extremely neat and useful way. Specialized to our case of a single
charged-particle loop the key formula reads

Here is the Feynman operator corresponding to the
sum of contributions from all photons coupled into the charged-particle
loop ~(~1~2,~3), and ~~(~(~1,~2~3)) is the analogous operator if
all contributions from classical photons are excluded. The operators Fop
and Fop are both normal ordered operators: i.e., they are operators in
the asymptotic-photon Hilbert space, and the destruction operators of
the incoming photons stand to the right of the creation operators of

outgoing photons. On the right-hand side of ( 1.3) all of the contributions

corresponding to classical photons are included in the unitary-operator
factor !7(L) defined as follows:
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Here, for any a and b, the symbol  a ~ b &#x3E; is an abbreviation for

the integral

and J(L, k) is formed by integrating exp ikx around the loop L:

This classical current J J-L ( L) is conserved:

The a* and a in (1.4) are photon creation and destruction operators,
respectively, and &#x26;(L) is the classical action associated with the motion of
a charged classical particle along the loop L:

The operator U (L) is pseudo unitary if it is written in explicitly covariant
form, but it can be reduced to a strictly unitary operator using by (1.7)
to eliminate all but the two transverse components of ~(A;), a~(k), J~(&#x26;),
and J~(k).
The colons in (1.3) indicate that the creation-operator parts of the normal-

ordered operator are to be placed on the left of U ( L ).
The unitary operator U (L) has the following property:

Here |vac &#x3E; is the photon vacuum, and &#x3E; represents the normalized
coherent state corresponding to the classical electromagnetic field radiated

by a charged classical point particle moving along the closed spacetime
loop L, in the Feynman sense.
The simplicity of (1.3) is worth emphasizing: it says that the complete

effect of all classical photons is contained in a simple unitary operator that
is independent of the quantum-photon contributions: this factor is a well-
defined unitary operator that depends only on the (three) hard vertices ~i ,~2.
and ~3. It is independent of the remaining details of Fo p ( L ( x 1, x 2 , c3 ) ) ,
even though the classical couplings are originally interspersed in all possibly
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ways among the quantum couplings that appear in ~(~(~1,~2,~3)).
The operator !7(L) supplies the classical bremsstrahlung-radiation photons
associated with the deflections of the charged particles that occur at the
three vertices, and ~3.

Block and Nordsieckl2 have already emphasized that the infrared

divergences arise from the classical aspects of the elecromagnetic field.
This classical component is exactly supplied by the factor ~7(L). One may
therefore expect the remainder ~(~(~1,~2~3)) to be free of infrared
problems: if we transform into momentum space, then
it should satisfy the usual pole-factorization property. A primary goal of
this work is to show that this pole-factorization property indeed holds.
To recover the physics one transforms ~p to coordinate space, and then
incorporates the real and virtual classical photons by using 1.3 and 1.4.
The plan of the paper is as follows. In the following section 2

rules are established for writing down the functions of interest directly
in momentum space. These rules are expressed in terms of operators
that act on momentum-space Feynman functions and yield momentum-
space functions, with classical or quantum interactions inserted into the
charged-particle lines in any specified desired order.

It is advantageous always to sum together the contributions corresponding
to all ways in which a photon can couple with C-type coupling into each
individual side of the triangle graph G. This sum can be expressed as a sum
of just two terms. In one term the photon is coupled at one endpoint, x+, of
this side of G, and in the other term the photon is coupled into the other end
point, x-, of this side of G. Thus all C-type couplings become converted
into couplings at the hard-photon vertices of the original graph G.

This conversion introduces an important property. The charge-
conservation (or gauge) condition == 0 normally does not hold in
quantum electrodynamics for individual graphs: one must sum over all

ways in which the photon can be inserted into the graph. But in the form
we use, with each quantum vertex Q coupled into the interior of a line
of G, but each classical vertex C placed at a hard-photon vertex of G,
the charge-conservation equation (gauge invariance) holds for each vertex
separately: = 0 for each vertex.

In section 3 the modification of the charged-particle propagator caused
by inserting a single quantum vertex into a charged-particle line is
studied in detail. The resulting (double) propagator is re-expressed as a
sum of three terms. The first two are "meromorphic" terms having poles
at p2 = ?T~ and p2 = m2 - 2p&#x26; - 1~2, respectively, in the variable p2.
Because of the special form of the quantum coupling Q  each residue is of
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first order in 1~, relative to what would have been obtained with the usual
coupling This extra power of k will lead to the infrared convergence
of the residues of the pole singularities.
Our proof that this convergence property holds can be regarded as a

systematization and confirmation of the argument for infrared convergence
given by Grammer and Yennie13.
The third term is a nonmeromorphic contribution. It is a difference of two

logarithms. This difference has a power of k that renders the contribution
infrared finite.

2. BASIC MOMENTUM-SPACE FORMULAS

The separation of the soft-photon interaction into its quantum and
classical parts is defined in Eq. ( 1.1 ). This separation is defined in a mixed
representation in which hard photons are represented in coordinate space
and soft photons are represented in momentum space. In this representation
one can consider a "generalized propagator". It propagates a charged particle
from a hard-photon vertex ?/ to a hard-photon vertex x with, however, the
insertion of soft-photon interactions.

Suppose, for example, one inserts the interactions with two soft photons
of momenta 1~1 and 1~2 and vector indices /11 and ~2. Then the generalized
propagator is

The generalization of this formula to the case of an arbitrary number of
inserted soft photons is straightforward. The soft-photon interaction ~ is
separated into its parts and by means of ( 1.1 ), with the x and
?/ defined as in ( 1.2).

This separation of the soft-photon interaction into its quantum and
classical parts can be expressed also directly in momentum space. Using
( 1.1 ) and ( 1.2), and the familiar identities

Vol. 64, n ° 4-1996.
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and

one obtains for the (generalized) propagation from ?/ to x, with a single
classical interaction inserted, the expression (with the symbol m standing
henceforth for m - zO)

The derivation of this result is given in reference 14. Comparison of the
result (2.4) to (2.1 ) shows that the result in momentum space of inserting
a single classical vertex j into a propagator i(/p - is produced by
the action of the operator

upon the propagator that was present before the insertion of the
vertex j. One must, of course, also increase by kj the momentum entering
the vertex at ~/. The operator 0(p 2014~ p + replaces p by p + 

This result generalizes to an arbitrary number of inserted classical

photons, and also to an arbitrary generalized propagator: the momentum-
space result of inserting in all orders into any generalized propagator

... , ~n ( p; l~l , ~ ~ ~ , l~n ) a set of N classically interacting photons with
.7 = 7~ + 1,- "~ + ~V is

where a = + ’’’ + The operations are commutative,
and one can keep each ~~ = 0 until the integration on ~~ is performed.
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One may not wish to combine the results of making insertions in all
orders. The result of inserting the classical interaction at just one place,
identified by the subscript ~6{1,’",~}, into a (generalized) propagator

I~1, ~ ~ ~ , abbreviated now by is produced by the action
of

upon ~~T,.
There is a form analogous to (2.7) for the Q interaction: the

momentum-space result produced by the insertion of a Q coupling into
~i...~(p; I~1, ~ ~ ~ ~,) = ~ at the vertex identified is given by the
action of

upon P~~ . .
An analogous operator can be applied for each quantum interaction. Thus

the generalized momentum-space propagator represented by a line L of a
graph G into which n quantum interactions are inserted in a fixed order is

where

If some of the inserted interactions are classical interactions then the

corresponding factors ( b~~ 1~~’ - S~~ 1~~ j ) are replaced by ( b~~ 1~~ j ) .
These basic momentum-space formulas provide the starting point for

our examination of the analyticity properties in momentum space, and the
closely related question of infrared convergence.

Vol. 64, n 4-1996.
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One point is worth mentioning here. It concerns the conservation of charge
condition = 0. In standard Feynman quantum electrodynamic this
condition is not satisfied by the individual photon-interaction vertex, but is
obtained only by summing over all the different positions where the photon
interaction can be coupled into a graph. This feature is the root of many of
the difficulties that arise in quantum electrodynamics.

Equation (2.9) shows that the conservation - law property holds for the
individual quantum vertex: there is no need to sum over different positions.
The classical interaction, on the other hand, has a form that allows one
easily to sum over all possible locations along a generalized propagator,
even before multiplication by This summation converts the classical
interaction to a sum of two interactions, one located at each end of the line
associated with the generalized propagator. (See, for example, Eq. (4.1 )
below). We always perform this summation. Then the classical parts of
the interaction are shifted to the hard-photon interaction points, at which

= 0 holds.

3. RESIDUES OF POLES IN GENERALIZED PROPAGATORS

Consider a generalized propagator that has only quantum-interaction
insertions. Its general form is, according to (2.9),

where

The singularities of (3.1 ) that arise from the multiple end-point
Ai = ~2 == ’’’ ~n == 0 lie on the surfaces

where
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At a point lying on only one of these surfaces the strongest of these
singularities is a pole.
The Feynman function appearing in (3.1 ) can be decomposed into a sum

of poles times residues. At the point a == 0 this gives

where for each i the numerator occurring on the right-hand side of this
equation is identical to the numerator occurring on the left-hand side. The
denominator factors are

and

where

The sign cr~ == ± in (3.7) is specified in reference 14, where it is also
shown that that the dominant singularity on p2 - m2 = 0 is the function
obtained by simply making the replacement

Each value of j can be treated in this way. Thus the dominant singularity
of the generalized propagator (3.1 ) on p2 - m2 = 0 is

Vol. 64, n ° 4-1996.
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The numerator in (3.9) has, in general, a factor

The last two terms in the last line of this equation have factors

p2 - m2. Consequently, they do not contribute to the residue of the

pole at p2 - m2 = 0. The terms in (3.10) with a factor taken
in conjunction with the factor in (3.9) coming from  == i + 1, give a
dependence 2pi03C1j2i03C3j. This dependence upon the indices 03C1j and 03C3j is

symmetric under interchange of these two indices. But the other factor in
(3.9) is antisymmetric. Thus this contribution drops out. The contribution
proportional to pi03C3i i drops out for similar reasons.

Omitting these terms that do not contribute to the residue of the pole at
p2 - m2 one obtains in place of (3.10) the factor

which is first-order in both and /I~i+1. That these "convergence factors"
actually lead to infrared convergence is shown in references 14 and 15.

4. INCLUSION OF THE CLASSICAL INTERACTIONS

The arguments of the preceeding section dealt with processes containing
only Q-type interactions. In that analysis the order in which these Q-type
interactions were inserted on the line L of G was held fixed: each such

ordering was considered separately.
In this section the effects of adding C-type interaction are considered.

Each C-type interactions introduces a coupling == Consequently,
the Ward identities, illustrated in (2.2), can be used to simplify the

calculation, but only if the contributions from all orders of its insertion
are treated together. This we shall do. Thus for C-type interactions it is

the operator C defined in (2.5) that is to be used rather than the operator
C defined in (2.7).

Annales de l’Institut Henri Poincaré - Physique theorique



491POLE-FACTORIZATION THEOREM IN QUANTUM ELECTRODYNAMICS

Consider, then, the generalized propagator obtained by inserting on some
line L of G a set of n interactions of Q-type, placed in some definite order,
and a set of N C-type interactions, inserted in all orders. The meromorphic
part of the function obtained after the action of the n operators Q~ is given
by (3.9). The action upon this of the N operators OJ of (2.5) is obtained
by arguments similar to those that gave (3.9), but differing by the fact that
(2.5) acts upon the propagator present before the action of Cy, and the
fact that now both limits of integration contribute, thus giving for each OJ
two terms on the right-hand side rather than one. Thus the action of N
such C/s gives 2N terms:

where

and the superscript 8 on the N’s and D’s means that the argument p2
appearing in (3.5) and (3.6) is replaced by p°. Note that even though the
action of C3 and Qj involve integrations over A and differentiations, the
meromorphic parts of the resulting generalized propagators are expressed
by (4.1 ) in relatively simple closed form. These meromorphic parts turn out
to give the dominant contributions in the mesoscopic regime.
The essential simplification obtained by summing over all orders of the

C-type insertions is that after this summation each C-type interaction
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gives just two terms. The first term is just the function before the action of
C~ multiplied by the second is minus the same thing with
p2 replaced by pi + Thus, apart from this simple factor, and, for one
term, the overall shift in pi, the function is just the same as it was before
the action of OJ. Consequently, the power-counting arguments used for
Q-type couplings go through essentially unchanged. Details can be found
in references 14 and 15.

5. COMPARISON TO OTHER RECENT WORKS

The problem of formulating quantum electrodynamics in an axiomatic
field-theoretic framework has been examined by Frohlich, Morchio, and
Strocchi8 and by D. Buchholz9, with special attention to the non-local
aspects arising from Gauss’ law. Their main conclusion, as it relates to the
present work, is that the energy-momentum spectrum of the full system
can be separated into two parts, the first being the photonic asymptotic
free-field part, the second being a remainder that: 1 ) is tied to charged
particles, 2) is nonlocal relative to the photonic part, and 3) can have a
discrete part corresponding to the electron/positron mass. This separation
is concordant with the structure of the QED Hamiltonian, which has a
photonic free-field part and an electron/positron part that incorporates the
interaction term but no added term corresponding to the non-free
part of the electromagnetic field. It is also in line with the separation of
the classical electromagnetic field, as derived from the Lienard-Wiechert
potentials, into a "velocity" part that is attached (along the light cone)
to the moving source particle, and an "acceleration" part that is radiated
away. It is the "velocity" part, which is tied to the source particle, and
which falls off only as r-1, that is the origin of the "nonlocal" infraparticle
structure that introduces peculiar features into quantum electrodynamics, as
compared to simple local field theories.

In the present approach, the quantum analog of this entire classical

structure is incorporated into the formula for the scattering operator by the
unitary factor U ( L) . It was shown in ref. 11, Appendix C, that the non-free
"velocity" part of the electromagnetic field generated by U (L) contributes
in the correct way to the mass of the electrons and positrons. It gives
also the "Coulomb" or "velocity" part of the interaction between different
charged particles, which is the part of the electromagnetic field that gives
the main part of Gauss’ law asymptotically. Thus our formulas supply in
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a computationally clean way these "velocity field" contributions that seem
so strange when viewed from other points of view.

Comparisons to the works in references 17 through 22 can be found
in reference 14.

[1] J. Bros in Mathematical Problems in Theoretical Physics: Proc. of the Int. Conf. in Math.
Phys. Held in Lausanne Switzerland Aug 20-25 1979, ed. K. Osterwalder, Lecture
Notes in Physics 116, Springer-Verlag (1980); H. Epstein, V. Glaser, and D. Iagolnitzer,
Commun. Math. Phys. 80, 99 (1981).

[2] D. Iagolnitzer, Scattering in Quantum Field Theory: The Axiomatic and Constructive
Approaches, Princeton University Press, Princeton NJ, in the series: Princeton Series in
Physics. (1993); J. Bros, Physica 124A, 145 (1984)

[3] D. Iagolnitzer and H.P. Stapp, Commun. Math. Phys. 57, 1 (1977); D. Iagolnitzer, Commun.
Math. Phys. 77, 251 (1980)

[4] T. Kibble, J. Math. Phys. 9, 315 (1968); Phys. Rev. 173, 1527 (1968); 174, 1883 (1968);
175, 1624 (1968).

[5] D. Zwanziger, Phys. Rev. D7, 1082 (1973).
[6] J.K. Storrow, Nuovo Cimento 54, 15 (1968).
[7] D. Zwanziger, Phys. Rev. D11, 3504 (1975); N. Papanicolaou, Ann. Phys.(N.Y.) 89, 425

(1975)
[8] J. Fröhlich, G. Morchio, and F. Strocchi, Ann.Phys.(N.Y) 119, 241 (1979); Nucl. Phys.

B211, 471 (1983); G. Morchio and F. Strocchi, in Fundamental Problems in Gauge
Field Theory, eds. G. Velo and A.S. Wightman, (NATO ASI Series) Series B:Physics
141, 301 (1985).

[9] D. Buchholz, Commun. Math. Phys. 85, 49 (1982); Phys. Lett. B 174, 331 (1986); in
Fundamental Problems in Gauge Field Theory, eds. G. Velo and A.S. Wightman, (NATO
ASI Series) Series B: Physics 141, 381 (1985);

[10] T. Kawai and H.P. Stapp, in 1993 Colloque International en l’honneur de Bernard

Malgrange (Juin, 1993/ at Grenoble) Annales de l’Institut Fourier 43.5, 1301 (1993)
[11] H.P. Stapp, Phys. Rev. 28D, 1386 (1983).
[12] F. Block and A. Nordsieck, Phys. Rev. 52, 54 (1937).
[13] G. Grammer and D.R. Yennie, Phys. Rev. D8, 4332 (1973).
[ 14] T. Kawai and H.P. Stapp, Phys. Rev. D 52, 2484 (1995).
[15] T. Kawai and H.P. Stapp, Phys. Rev. D 52, 2505, 2517 (1995).
[16] T. Kawai and H.P. Stapp, Quantum Electrodynamics at Large Distances, Lawrence Berkeley

Laboratory Report LBL-25819 (1993).
[17] J. Schwinger Phys. Rev. 76, 790 (1949).
[18] D. Yennie, S. Frautschi, and H. Suura, Ann. Phys. (N.Y.) 13, 379 (1961).
[19] K.T. Mahanthappa. Phys. Rev. 126, 329 (1962); K.T Mahanthappa and P.M. Bakshi, J.

Math. Phys. 4, 1 and 12 (1963).
[20] V. Chung, Phys. Rev. 140, B1110 (1965)
[21] P.P. Kulish and L.D. Fadde’ev, Theor. Math. Phys. 4, 745 (1971).
[22] E. d’Emilio and M. Mintchev, Fortschr. Phys. 32, 473 (1984); Phys. Rev. 27, 1840 (1983)

(Manuscript received on January 1 1996.)

Vol. 64, n° 4-1996.


