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524 K. FREDENHAGEN AND M. R. GABERDIEL

1. INTRODUCTION

Particle-like excitations which are confined to 2 spatial dimensions are
not necessarily bosons or fermions. In general their statistics can only be
described by some unitary representation of Artin’s braid group [1]. These
particles are usually referred to as “anyons” or “plektons” depending on
whether the braid group representation is abelian or not.

The possible existence of plektons can be derived from two apparently
disjoint principles. One is based on a quantum mechanical description of
particle configurations in terms of sets of points in space. The principle of
indistinguishability of identical particles then leads in 2 space dimensions
to the occurence of braid group representations characterizing the behavior
of the wave functions under a permutation of the arguments [20]. The
other derivation is based on the principles of quantum field theory in a
2 + 1 dimensional spacetime. Particle-like excitations in massive models
in general correspond to nonlocal fields which depend on a spacelike
direction [2]. An analysis of the statistics of such particles by the methods of
the DHR theory of superselection sectors [3] then leads in 2+ 1 dimensions
to the possible existence of nontrivial braid group representations [13, 14].

Models for anyons were first invented by Wilczek in [32], and non-
abelian gauge theories with a Chern-Simons term in the action are believed
to be candidates for models with non-abelian braid group statistics. (For
another mechanism leading to plektons see also [5].) Whether plektons
really occur in physical systems is unknown at the moment. Anyons are
considered to be the excitations which are responsible for the Fractional
Quantum Hall Effect [19].

It would be desirable to determine model independent (characteristic)
properties of plektonic excitations. At present, little has been achieved in
this way as there does not exist a description of free plektons which could
be used as a basis for an analysis of systems of weakly coupled plektons.
We therefore propose to explore the structure of plektonic multiparticle
excitations as determined by the first principles of quantum field theory.

In the case of permutation group statistics the multiparticle space (as
a representation space of the Poincaré group) is obtained by the choice
of a Poincaré invariant metric (determined by the statistics) on the tensor
product of Poincaré group representations on single particle spaces [3].
This is no longer true in the plektonic case because the sum rules for spins
involve the statistics [7]. A multiplekton space with a representation of the
Poincaré group was recently constructed by Mund and Schrader [23]: it
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SCATTERING THEORY FOR PLEKTONS IN 2 + 1 DIMENSIONS 525

is determined by the Poincaré group representation in the single particle
spaces and a representation of the braid group B,,.

It will turn out that the space of multiparticle scattering states of a
massive, Poincaré covariant 2 + 1 dimensional theory, for which the fields
exhibit in general braid group statistics [9, 14] has this proposed structure.
To establish this result we construct scattering states, using the Haag-Ruelle
construction. We then analyze the space of such states in detail and unveil
its structure.

Due to the rather complicated localization properties of the fields certain
difficulties arise. Firstly, to describe the product of particle representations
by compositions of endomorphisms of an algebra of observables, we have
to enlarge the algebra of local observables on Minkowski space Ay (M).
To this end we use the formalism of [13, II] (see also [8], [16]) to extend
Ao (M) to an algebra Ay (M) which may be considered as the algebra of
local observables on the union of Minkowski space with the hyperboloid at
spacelike infinity. With respect to this algebra we then define the associated
field bundle [3], an intrinsic structure equivalent to the exchange algebra
of vertex operators [25] which is known from conformal field theory. We
develop a new geometrical description for the (statistics) intertwiners in
which the (geometrical) role of the braid group becomes apparent. Using
this formulation we can then give a compact formula for the commutation
relation of generalized fields.

Then we construct Haag-Ruelle approximants to scattering states. If we
followed the same procedure as in [2] (see e.g. [15]), the resulting vectors
which describe the scattering states would depend on (i) the Lorentz system,
in which the Haag Ruelle approximants were defined, (ii) the “auxiliary
direction” which was needed in [2] for the definition of field operators,
and finally (iii) on the localization directions of the nonlocal fields which
create the one particle states. It seems to be very difficult to disentangle
this complicated dependence which is necessarily nontrivial in the case of
proper braid group statistics. (In 3 + 1 dimensions the scattering vectors
depend only on the corresponding one particle vectors, but the proof in [2]
makes explicit use of the dimensionality of spacetime). In our approach
the auxiliary direction does not appear, but now the localization direction
is located on a covering space of the hyperboloid at spacelike infinity. In
order to avoid a dependence on the Lorentz system we reformulate the
Haag-Ruelle theory in a manifestly Lorentz invariant way by propagating
each particle in its own rest frame. There remains the dependence on
the directions but this dependence is physically meaningful and has to be
investigated thoroughly.

Vol. 64, n° 4-1996.



526 K. FREDENHAGEN AND M. R. GABERDIEL

Having constructed the scattering states we then turn to the calculation of
their scalar products. These can be most easily computed using the concept
of “right inverses”, recently introduced by Roberts [27]. This allows us to
extend the calculation for the case of permutation statistics directly to the
present situation.

Finally, we analyze the dependence on the localization directions. We
show that the scattering vectors are locally independent of the spacelike
directions which characterize the localization regions, and we find an explicit
transformation formula (in terms of the statistic intertwiner relating scatering
vectors corresponding to different sets of spacelike directions. This result
enables us to unveil the global structure of the space of scattering vectors;
the set of directions can be regarded as parametrizing local trivializations
of the universal covering space C,, of the configuration space C,, of n non-
coincident velocities in 3-dimensional Minkowski space. And the space of
scattering vectors has the structure of the Hilbert space of square integrable
sections of a vector bundle which is associated to this covering space [29].

This structure (for the case of single particle spaces with an irreducible
representation of the Poincaré group) was anticipated by Schrader [30] (see
also [31]). The space of all scattering vectors is precisely the direct sum
of the n-particle spaces of Mund and Schrader [23] where the braid group
representations are induced by a Markov trace on the braid group B...

Some work in this direction has already been done by Frohlich and
Marchetti [15], who concentrated on the abelian case, and by Schroer [28],
who pointed out problems and made some prospective remarks. The present
work is largely a less technical summary of the results of [12].

2. THE UNIVERSAL ALGEBRA AND THE FIELD BUNDLE

The framework in which we shall work is that of algebraic quantum
field theory. In particular, we are interested in the Buchholz-Fredenhagen
situation of 2 + 1 dimensional quantum field theory where the fields,
generating the different sectors from the vacuum, are localized in space-like
cones. These fields have been shown to exhibit braid group statistics [9, 14].

Let us briefly recall the axioms involved and introduce the notation.
The local observables are described by von Neumann algebras A(0O),
indexed by the open double cones O of Minkowski space M, which
satisfy locality and isotony. Locality means that algebra elements localized
in spacelike separated double cones commute, and isotony requires that an
algebra corresponding to O is contained in an algebra corresponding to a

Annales de I'Institut Henri Poincaré - Physique théorique



SCATTERING THEORY FOR PLEKTONS IN 2 + 1 DIMENSIONS 527

double cone containing O. Given isotony, we can define the full algebra of
observables, Ay (M), to be the norm closure of the union UA (O) of all
local algebras. Moreover, for an arbitrary region R C M, we define Ay (R)
to be the C*-subalgebra of Ay (M) generated by all algebras A (O) with
double-cones O C R, and A(R) to be its weak closure.

For simplicity we want to assume that the theory is Poincaré invariant.
This means that there exists a representation o of the identity component
’PIL of the Poincaré group by automorphisms of Ay (M) such that
a(z, A) (A(O0)) = A((z, A) (O)). There is an action of the algebra of
observables A, (M) (by bounded operators) on a Hilbert space H,, the
vacuum representation, and this space carries a strongly continuous unitary
representation Uy of ’PJTF. The generators of the translations P, satisfy the
spectrum condition

spP C {0} U {p € M|p> > u?, po > 0} ¢))
for some p > 0. Finally, there is a unique cyclic unit vector Q € H,,

invariant under Poincaré transformations, which represents the vacuum.

We are interested in a purely massive, Poincaré covariant theory, in
which all sectors describe massive particles. That means, that for the
physically allowed representations = : Ag (M) — H,, H, carries a

strongly continuous representation U, of the covering group Pl of PJI
such that the generators of the translations satisfy the spectrum condition
HmCspPCHmU{p€M|p2>M2,p0>0} 2)

with 0 < m < M. Here H,, is the mass shell H,, = {p € M|p? = m?,
po > 0} and m is interpreted as the mass of the particle described by 7, 7
is called “massive single particle representation”.

It was shown in [2] that for irreducible massive single particle
representations 7, there is a unique vacuum representation my, ie. a
representation satisfying (2.2) (with y > M — m), such that = and =, are
unitarily equivalent when restricted to the algebra of the causal complement
of any spacelike cone S

7o (s7) = Tola, (57)- &
Here a spacelike cone S is the convex set
S:=a+ U 2O, 4
A>0

where a € M is the apex and O is a double-cone of spacelike directions
O={r=M|r’=~land ry -7, r—7_ € V;} ®)
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528 K. FREDENHAGEN AND M. R. GABERDIEL

with r2 =72 = —1,ry —r_ € V4, V; denoting the interior of the forward

light cone. We denote the set of spacelike cones by S.

In view of this result we shall from now on fix the vacuum representation
7o and identify it with the defining (identical) representation of A (M)
on Hy. We consider only those massive single particle representations m
which satisfy the “Buchholz-Fredenhagen criterion” (3) with respect to .
Furthermore, we shall assume that the fixed vacuum representation fulfills
Haag duality for spacelike cones, i.e.

A(S)=A(S) forall SeS. (6)

To define multi-particle representtations it is necessary to somehow
multiply these single particle representations. To do this one describes the
representations in terms of endomorphisms of some algebra of observables.
These endomorphisms can then by composed to describe the corresponding
product representations. In the present situation, representations can be
described by endomorphisms of the universal algebra Ay (ﬂ), which
can be uniquely characterized by the following universality conditions (this
construction was proposed in [8] and further developed in [16] and [13, II]):

« there are unital embeddings i/ : A (I) — Ao (M) such that for all
I, Je K :={5515 € S}

Nay =4 fIcJ @)

and Ag (M) is generated by the algebras i’ (A (I)).

o for every family of normal representations (7!)jcic, ' : A(I) —
B (H,) which satisfies the compatibility condition

7['J|A(1)=71‘I ifICJ, ®)
there is a unique representation 7 of A (W/l—) in ‘H, such that

roil =qxl. )

The endomorphisms p corresponding to the representation 7 are
characterized by the condition that the unique extensions of m and mg
to Ay (M) (which shall be denoted by the same symbols) satisfy Q)

T = Mg 0 9. (10)
It should be borne in mind, however, that the vacuum representation g is

in general no longer faithful on Ay (H) (see [13, II] for details).

(') From now on we shall consider A (I), I € K as abstract subalgebras of .Ag (M) and only
7 (A) (resp. mo (A)) as operators on the vacuum Hilbert space Hp.
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The endomorphisms p one obtains are localized in some I € K in the
following sense [10].

DEFINITION 1. — An endomorphism o of Ay (M) is called localizable within
IeKifforall Iy C I, Iy € K there exists a unitary U € A(I) such that

e(A)=AdU(4), AeA(l), (11

AdU* o Q(.A(Il)) C .A(I]), I D I(), I, e K. (12)

An endomorphism g is called transportable if for every I € K there exists
on endomorphism o' of Ay (M) which is localizable within I and is
inner equivalent to g, i.. there exists a unitary U € Ay (M) such that
o = AdU o p.

Note that endomorphisms which are localizable within I are
not necessarily localizable within J O I. However transportable
endomorphisms which are localizable within some region are automatically
localized in every larger region. We denote by A the set of transportable
endomorphisms and by A (I) the subset of transportable endomorphisms
which are localizable within 1.

In the s+ 1-dimensional situation, s > 3, it is possible to embed .4 (M)
into a net of field algebras F which transform covariantly under some
compact group of internal symmetries and satisfy graded locality [4]. These
fields may generate single particle states from the vacuum, and one can use
them for the construction of multiparticle scattering states by the standard
recipe of the Haag-Ruelle theory [17, 18]. In the present 2 4 1 dimensional
sittuation, however, a general construction of field algebras is difficult,
even though some progress has been made [22, 26]. We therefore return
to the original construction of scattering states used in [3] and [2]. This
method is based on the fact that the partial intertwiners which exist between
representations satisfying a localizability condition of the type (3) behave in
many respects in the same way as field operators. They can be conveniently
described by the so-called field bundle formalism which was introduced
in [3, IJ.

Let Sy be a spacelike cone. We describe vectors ¥ in some representation
7o o o by a pair ¥ = {p; ¥} and consider A (So) x Ho = H as a hermitian
vector bundle over A (Sp), where on every fiber H, = {p} x H, the scalar
product is that of Hg. Generalized field operators are pairs B = {p; B} €
A (So) x Ag (M) which act on H by {4; B} {o; ¥} = {06; m00 0(B) ¥}

and possess the norm ||{g; B}|| := || B||. Field operators have an associative
multiplicative structure given by
{01; B1} {02; B2} := {02 01; 02 (B1) B2}. (13)
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530 K. FREDENHAGEN AND M. R. GABERDIEL

The formalism contains a large redundancy which can be described by
the action of intertwiners T € A (M) satisfying 01 (4)T = T o(A),
A € Ap(M). Here T is an intertwiner from p to p; and it induces the

actions :

(01171 0) {o; U} = {p1; 1 (T) ¥},  (e1|T|0) o {0; B} = {ps; TB}.
(14)

The Poincaré group acts on vectors ¥ = {p; U} via U,, where U, is

the representation of ’Pl corresponding to m = my o . The representation
of the identity component of the Poincaré group on Ay (M) lifts to a
representation on the generalized field operators. However, due to the
fact that the vacuum representation mo is not faithful on 4y (W), this
representation can only be defined locally (see [13, II] and [12] for details).

3. LOCALIZATION AND COMMUTATION RELATIONS

Usually, the localization property of a generalized field operator
B = {p; B} is already charcterized by the condition that B intertwines the
identity with p on the algebra of the spacelike complement of the localization
region. However, due to the existence of global self-intertwiners in .4g (H)
this condition is too weak to allow for a derivation of commutation relations
in the present situation. We therefore characterize the localization instead
by a path in K, i.e. a finite sequence I; € K, i = 0,..., n with I = Sy
and such that either I; C I;,_; or I; D I,_;, 1 = 1, ..., n. For each 7 there
is some unitary U; € A (I; U I;,_;) such that AdU;...U; o p € A(I;). Then
{0, B} is called localized in (Io, ..., I;,) if

U,...U; B € A(I,). (15)

The concept of localization described above is an extension of the
corresponding notion in [3] following ideas of [13, II]. Clearly, the
localization depends only on the homotopy class I of a path (I, ..., I,)
where homotopy is defined in the obvious way. The set of these classes
shall be denoted by K and the set of field operators localized in I by F (I).

Let us now consider paths with the same endpoint. They differ (up
to homotopy) by a closed path v = (lp,..., Iy) with I, = I,. We
choose associated intertwiners Uy, ..., Uy with mg (U...U1) = 1. Then
v+ U (v) = Uy...U; is a representation of the homotopy group by unitary
elements of Ay (M).

Annales de UInstitut Henri Poincaré - Physique théorique
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Field operators which are mutually spacelike localized have well-defined
commutation relations. Here mutually spacelike means that the endpoint
e(T) = I,, of the localization path (Iy = Sy, ..., I,) = I of one operator is
spacelike separated from the endpoint e (J) = J; of the localization path
(Jo = So,..., Ji) = J of the other. For a product of mutually spacelike
separated field operators B; = {p;, B;}; localized in I;, I = 1,..., n the
commutation relations are given as

BU (n)~~-Ba(1) = €0 Bn...Bl, (16)

where ¢ is an intertwiner from g;...0n 0 05 (1)--05(n) and o is a
permutation. £ depends on the endomorphisms p; € A(Sp), on the
localizations J; and on o. It is described in terms of a unitary representation
of the groupoid of colored braids on the cylinder [13, II]. An alternative
description which exhibits the topological role of the braid group in the
theory can be obtained by the following geometrical construction.

Mutually spacelike paths I; are continuously deformed to paths ~; on the
set of spatial directions in some Lorentz frame, i.e. to paths on the circle
S' with a fixed initial point zo corresponding to Iy and disjoint endpoints
z; corresponding to the endpomts e (I ) of I;. On the cylinder S! x R we
choose points (2, %), ¢ = 1,..., n and paths I'; from (2o, 7) to (20, o (¢)),

L= (77, 0 (i) o (i, i — 0 (i) o (7, 1). an

The braid is now the usual equivalence class of the family of strands
I';, : = 1,..., n (see for example figure 1, where the 3rd dimension is
introduced for visualizing the parameter of the paths ();, i — o (3))).

By the standard techniques of algebraic field theory (see [3, 13] for
more details) it follows that e is invariant under small deformations of
1., ..., I,—so equivalent families I';, i = 1,..., n give the same intertwiner
e~ and that the braid relations are respected.

4. CLUSTER PROPERTY

Let us briefly recall the notion of a left inverse of an endomorphism
0 € A(Sy) (see [13], [6], {21] for more details): A left inverse ¢ of a
o is a positive mapping of Ay (M) mapping A (Sp) into itself such that
¢ o p = id and such that g o ¢ is a conditional expectation from .4y (M)
to o (Ao (M)). If g is irreducible and has finite statistics the left inverse of
o is unique. If g1, ..., on € A (Sp) are irreducible with finite statistics, the
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532 K. FREDENHAGEN AND M. R. GABERDIEL

1 2 3

Fig. 1. — The braid corresponding to the permutation o = 71 7 71 in the special case where
all three paths -y, have trivial winding number and thus can be represented as paths in the plane.

product ¢ = g;...0, is not irreducible in general, and there is no unique left
inverse. But there exists a so called standard left inverse which is given by

¢ = P, (18)
where p; is the unique left inverse of g;, ¢t = 1,..., n
We also need the notion of a right inverse of an endomorphisms which
has been recently introduced by Roberts [27]. The right inverse of g is only
defined on the class of intertwiners of the form (¢” ¢|T'| ¢’'0). For such an
intertwiner, the right inverse, x, (T), is an intertwiner from o’ to o”. If p
has a conjugate representation, a right inverse of p can be defined as

Xe (T)=¢"(R)'T ¢ (R), (19)
when R is an isometric intertwiner from the vacuum representation to
00. Roberts has shown that there is a unique right inverse, the standard
right inverse, which agrees with the standard left inverse on local self-
intertwiners. The standard right inverse is unique for irreducible g with
finite statistics. Furthermore, the product of standard right inverses is the
standard right inverse of the composite endomorphism.

We are now in the position to state a version of the cluster theorem [3]
which is adapted to the present situation and which will be needed later on
for the calculation of scalar products of scattering states.

LemMA 2 (Cluster Theorem). — Let B; = {o;, B;} € F(I;), i = 2, 4 with
I, = I, and let B; = {p;, B;}, j = 1, 3 be products of field operators.
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For fixed e, €* = 1 let T be the supremum of |t| for all t for which all the
field operators in By and Bg are spacelike localized with respect to I, + te.
Furthermore, let T be an intertwiner from g1 02 to 0304. We are interested in
the leading behavior of (B, B3 2, T B, B Q) for larger 7. Let us assume
that g4 is irreducible with finite statistics with right inverse x4 and denote
by {W;} a (possibly empty) orthonormal basis of the Hilbert space of local
intertwiners from g4 to g,. Then

|(B1B3 2, TBy B1 2)- Y (B3R, x4 (T 01 (W;)) B, Q)

J

x(Bs 2, Wy B, Q)| < e [] IIBill. (20)

A proof can be found in [12]. The essential idea is a reformulation of the
proof of the corresponding Lemma 7.3 in [3, II] in terms of right inverses.
The proof which in its original form relied on permutation group statistics
then directly extends to the case of nontrivial braid group statistics.

5. SCATTERING STATES

To construct scattering states we follow the general recipe of the Haag-
Ruelle theory (for an introduction see [18]): we first construct almost local
one particle creation operators B, (here almost localized in spacelike cones)
and propagate them to other times using the Klein Gordon equation. In this
way we obtain operators B; (¢) which are essentially localized at time ¢
and create one particle state vectors ¥, = B, (¢) 2 independent of t. We
then show that the states

B, (¢)..B, () 2 @1)

converge for ¢ — *oo and interpret the limit as the outgoing (incoming)
scattering state vector corresponding to the single particle vectors ¥,
it =1,..,n.

To be more precise, let B € F (1) for some localization I € K, where
the energy momentum spectrum spy B €2 contains an isolated mass shell
H,,. Let furthermore f € S (M) have a Fourier transform f with compact
support in V,, such that supp f N spy B C H,,. Then, for

2

fol) = @n)? / B peireti (FFE) ¢ f (), 22)

Vol. 64, n°® 4-1996.
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the operator
B() = / &z f, (z) a (B), 23)

creates a one particle state B (t) &2 = ¥ of mass m which does not depend
on t.

By the standard techniques of the stationary phase approximation (see
e.g. [24]), we can show [12] that B (t) can be approximated by operators
B.(t) € F(I +tV.(f)).

B.(t) = / &z fi (z) az (B), 249
tVe (f)

such that [|B (¢) — B, (t)|| < cx |t|™ for suitable constants cy. Moreover,
the norms of the operators (23) are bounded by ||B (¢)|| < ¢ (1+|¢|®). Here

Ve (f) = {'u € M, dist ('v, —:;) < e forsomep € suppf} (25)

is the velocity support of f.

_To construct multiparticle scattering states, let I, ek, B, € F (IZ)
fi€eCy(Vy), e, >0,4=1,..., n be a configuration such that the regions
I + t V., (f;) are mutually spacelike for large ¢. Then the limit

lim B, (t)..B1 (£) Q (26)

exists and may be interpreted as a vector describing an outgoing
configuration of n particles with state vectors ¥, = B, (¢) Q. As long
as the localizations I; are kept fixed the scattering vectors depend only on
these one particle vectors. Hence we may write

Jlim B, (t)..B1 () 2 = (¥s, L) x ... x (@, Iy). @27

It is also easy to see how the Poincaré group acts

U (L) (®,, I,)x..x(®;, ;) = (U(L)®,, LI,)x..x(U (L) ¥, LL;),

(28)
and how the scattering vectors depend on the order of the one particle
vectors

(‘IL7 (n), i,, (n)) X ... X (\I’a(l), fg (1)) =€ (b) (‘I’n, fn), (29)

where b is the cylinder braid defined in section 3. Recall that € acts via the
vacuum representation. Since the intertwiner describing the transition from
I, to other sheets is trivially represented in the vacuum, wg o £ is actually
a representation of the groupoid of colored braids on the plane.
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To calculate the scalar products of scattering vectors we can use the
cluster theorem to reduce the n-particle scalar products to products of one
particle scalar products. The precise statement is the following.

THEOREM 3. — Let V; C H, be compact and L ek i= 1,..., n such that
for suitable neighborhoods VE of V; in V. the regions t VS + I; are mutually
spacelike for large t, and let f; be test-functions with supp f, C V£ Let
B;, C, e F (IZ) with associated single particle representations g; and o;,
respectively, 1 = 1, ..., n. Let T € A(Sp) be an intertwiner from o5...0,, to
01..-0r, and ¢; be the unique left inverse of p;, © = 1, ..., n. Then, writing
‘I’i = Bi (t) ﬂ, @i = C, (t) Q, we ﬁnd

(i) If o; is not equivalent to o; for some i € {1, ..., n}, then

(R, I) X . x (®1, L), T (@, I,) x ... x (®1, I;)) =0.  (30)
@Gi) If o = 04, @ = 1,..., n, then

(¥, I,) X .. (¥q, L), T (B, I,) X ... x (81, [1))
= ¢n...t1 (T) H(\L-, ®,). @31

The proof follows directly from the lemma and the observation that
the standard right inverse xi...x» Of 01...0, agrees with the standard left
inverse ¢,...¢y on local intertwiners.

Thus the scattering vectors depend in a continuous way on the one
particle vectors. Since F (I) is dense in H for all I € K we find, by going
to the closure, all scattering states corresponding to single particle states
with prescribed momentum support.

6. THE STRUCTURE OF SCATTERING STATES

To unveil the structure of the space of scattering vectors it is important
to understand the dependence of the scattering vectors on the localizations
I~i € K. To this end, let us assume that there exists for some j € {1,...,n}
a localization J; € K, a field operator C; € F (J;) and a test function g;
with supp §; C m; V. (f;) such that

T, =C; (), (32)

where C; (t) is defined in analogy to (23) and J; +t V. (f;) is spacelike to
I +tV,_(f;) for i # j and large ¢. If j = 1 the scattering vector (27) does
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not change when Bj (t) is replaced by C; (t). If j # 1 we first commute
B; (t) to the right, then replace it by C; (¢) and commute it back to the
Jj-th place. The whole procedure amounts to an application of an intertwiner
e (b) to the scattering vector where b is a pure cylinder braid obtained by
the prescription of section 3.

It is clear that the scattering vectors do not change when the localizations
are translated or made smaller. Hence we may label the configurations I
by points 7; in the covering space of the spacelike hyperboloid {z € M,
x? = —1}. Moreover, the embeddings are locally constant in 75, ..., 7, and

are globally constant in 7.

Because of the condition that J;+ V. (f;) is spacelike to I;+t V. (f;) for
i # 7, the set of allowed configurations 7; depends on the velocities of the
one particle states involved. Furthermore, for generic configurations of non-
coinciding velocities, there exists a canonical choice for 7;. We can use this
fact, to translate (essentially) the dependence on the configurations 7; into
an (additional) dependence on the velocity configurations. It will then turn
out that the scattering vectors depend actually on points in the covering
space of the space of non-coinciding velocities, and that they possess a
monodromy which we calculate explicitly. Assuming certain analyticity
properties (which follow for example from the Poincaré covariance) this
amounts to showing that the space of scattering vectors is a vector bundle
associated to the universal covering space of the space of non-coinciding
velocities in 3-dimensional Minkowski-space.

To be a bit more precise, let us introduce the following notation.
Let eo e H; be arbitrary. A configuration of disjoint particle velocities

L= = ;é p—’, t # j, is called regular (with respect to eg) if
m;

there are mutually spacehke cones S; with apex ey such that g; € S; (in
particular g; # eg). To a regular configuration q = (qz, ..., ¢,) We associate
a configuration of spacelike directions r = (ry, ..., r,), with r; = ¢; — €.

We now pick a regular “reference” configuration q° and choose n

homotopy classes of paths of spacelike cones I, i = 1,..., n whose
endpoints e (I?) correspond to the canonical directions r?. We label these
homotopy classes by ¥°. We also choose a unitary local self-intertwiner
U°. For given one particle vectors ¥; whose velocity supports are centered
around ¢?, we can then unambiguously define a n-particle scattering vector
as

U (W, I9) x ... x (¥, I?). (33)
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Now, let 74 be a path from q° to a regular configuration q which has
the property that none of the n velocities passes through e;. We want
to associate to 74 a way of assigning a n-particle scattering vector to n
one particle vectors ¥; whose velocity supports are centered around g;.
Given the one particle vectors, we want to require that this map is locally
independent of the endpoint q of 4.

This can be done as follows. As before, we describe the spacelike
directions r° by the n-points (r{, 1), ..., (r2, n) on the cylinder S* x R,
As long as q(t) is regular, the corresponding path r(t) is canonically
determined. At a critical point, where q(t) ceases to be regular two
directions 7 and 7, coincide (%). In a neighborhood of this critical point
we define r (t) by the following prescription. We move the direction r;
corresponding to the smaller velocity from (7, I) to (r;, 1/2), then change
the tow directions past each other and finally move (7}, 1/2) back to (77, 1).
Geometrically, this means that the points r () on the cylinder, viewed from
the (S!, 0)-end of the cylinder and looking in the long direction, perform
the same motion as the velocities q(t) when viewed from e, (compare
fig. 2). We denote the so determined path r (t) by v" = (77, ..., 75)-

/1

g-space r-space

Fig. 2. — A path q(t) and the corresponding path r (¢).

Each path 47 lifts to a unique path 47 from 79 to 7;. We denote the
corresponding configuration by ¥ = (74, ..., 7). Each path 74 therefore
determines a pure braid on the cylinder, namely the homotopy class

b(vq) = ()"t oq" o (F9). 34)

() This is the generic case. The general case is covered by the geometrical description given
below.
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Note that b defines a homomorphism of the groupoid of colored braids on
the cylinder (corresponding to paths 74, Where q is a permutation of q°)
to the pure braid group of the cylinder. This homomorphism is actually an
automorphism of the pure braid group of the cylinder when restricted to
closed paths y40. (Both properties can be easily seen from the geometrical
description.) Note also, that the image of a given path does not depend
on the choice of ey locally.

Given n one particle vectors ¥; whose velocity supports are centered
around g;, we then unambiguously define the n particle scattering vector as

Ule(b(vq) " (¥n, 1) x ... x (¥4, I), (35)
where I corresponds to 7.

It remains to show that this definition is locally independent of q. It is
clear that this is the case if q remains in the same component of the space
of regular velocity configurations. Suppose therefore, that q; and q» lie in
two different components, and that 4, differs from 74, by a path with
only one critical point where two neighboring localization directions, 7
and r,, coincide. We want to show that

UOE(b (fYCh))‘l (‘Ilnﬂ irlz) X ... X (‘I'h ill)
=U% (b(7q,)) H (¥, I2) x ... x (¥, I?), (36)

where I are the localization paths corresponding to g, for j = 1, 2 and
W, are one particle vectors with suitable velocity supports so that the two
n-particle scattering vectors are well-defined.

On the left hand side we commute (using (29)) the field operator creating
the particle with the smaller velocity (of the two particles £ and m) to the
right. We then change its localisation to the localization corresponding to I?
and commute it back, using (29) again. (We have to change the localization
region of the vector with the smaller velocity in order to guarantee that
the two localization regions (corresponding to k£ and m) become mutually
spacelike for large ¢ for both I' and I2.) Doing this we pick up a pure
braid, which is precisely the pure braid corresponding to the path from q;
to g2 via (34). As the two intertwiners in (36) differ by this braid, this
establishes the identity.

We have thus shown how the dependence of the scattering vectors on
the localization properties of the one particle creation operators can be
translated into an dependence of the scattering vectors on the covering
space of the space of n non-coinciding velocities. We can directly read off
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the monodromy: if y4o is a pure braid in the homotopy class of q°, then
the intertwiner, corresponding to vqo is

U%e (b(vq0)) ™, 37

where b is the automorphism of the pure braid group defined in (34). It can
also be shown that this description is independent of e [12].

If the space of n particle scattering vectors has locally the structure of
a function space over the configuration space of non-coinciding velocities
(this can be shown, for example, under the assumption of Lorentz covariance
as assumed here), the space of n particle scattering vectors has the structure
of the Hilbert space of square integrable sections of a vector bundle over
this configuration space. In this case, the above analysis shows that this
vector bundle is associated to the universal covering space via the above
monodromy [29]. This is precisely the structure proposed by Schrader [30]
and Mund and Schrader [23]. More details about the technicalities can be
found in [12].

7. CONCLUSIONS

Within the framework of algebraic quantum field theory we have
constructed scattering states for particles with non-abelian braid group
statistics. The scattering states depend in a subtle way on the localization
regions of the generalized field operators with which the corresponding
one particle vectors can be constructed. We analyzed this dependence in
detail. As the localization regions are intimately linked to the velocities of
the corresponding one particle vectors, the dependence on the localization
regions can be translated into a dependence on the velocity configurations.
It turns out that the scattering vectors depend then on the covering space
of the configuration space of non-coinciding velocities, where the vectors
in different sheets are related by a “monodromy intertwiner” which we
calculate explicitly. This demonstrates that the space of scattering vectors
has the structure of a vector bundle, associated to the universal covering
space of the space of non-coinciding velocities.

The analysis suggests how one might try to construct local fields with
non-abelian braid group statistics. In particular, one should expect that the
creation and annihilation operators depend on some spacelike direction,
parametrizing the localization properties. One can then follow a similar
construction as in [23] to describe Poincaré transformations of the creation
and annihilation operators. In particular, one can use the additional degrees
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of freedom to “undo the Wigner phase”, so that the phase factor in the
Lorentz transformation is independent of the momentum. Then one can
construct Poincaré covariant, free fields in the usual manner. The Poincaré
covariance determines the two point function which one can calculate
explicitly. From this expression it should then be possible to read off the
braided commutation relations. Details remain to be worked out [11].
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