Inverse scattering theory for Dirac operators
Annales de l'I.H.P. Physique théorique, Volume 66 (1997) no. 2, p. 237-270
@article{AIHPA_1997__66_2_237_0,
     author = {Isozaki, Hiroshi},
     title = {Inverse scattering theory for Dirac operators},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {66},
     number = {2},
     year = {1997},
     pages = {237-270},
     zbl = {0908.35089},
     mrnumber = {1449193},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1997__66_2_237_0}
}
Isozaki, Hiroshi. Inverse scattering theory for Dirac operators. Annales de l'I.H.P. Physique théorique, Volume 66 (1997) no. 2, pp. 237-270. http://www.numdam.org/item/AIHPA_1997__66_2_237_0/

[1] S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics, J. d'Anal. Math., Vol. 30, 1976, pp. 1-38. | MR 466902 | Zbl 0335.35013

[2] E. Balslev, B. Helffer, Limiting absorption principle and resonances for the Dirac operator, Adv. in Appl. Math., Vol. 13, 1992, pp. 186-215. | MR 1162140 | Zbl 0756.35062

[3] R. Beals and R. Coifman, Multidimensional inverse scattering and nonlinear P.D.E., Proc. Sympo. Pure Math., Vol. 43, 1985, pp. 45-70. | Zbl 0575.35011

[4] A. Boutet De Monvel-Berthier, D. Manda and R. Purice, Limiting absorption principle for the Dirac operator, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 58, 1993, pp. 413-431. | Numdam | MR 1241704 | Zbl 0789.35134

[5] G. Eskiń and J. Ralston, Inverse scattering problem for the Schrödinger equation with magnetic potential at a fixed energy, Commun. Math. Phys, Vol. 173, 1995, pp. 199-224. | MR 1355624 | Zbl 0843.35133

[6] L.D. Faddeev, Inverse problem of quantum scattering theory, J. Sov. Math., Vol. 5, 1976, pp. 334-396. | Zbl 0373.35014

[7] G. Hachem, The ∂-approach to inverse scattering for Dirac operators, Inverse Problems, Vol. 11, 1995, pp. 123-146. | MR 1313603 | Zbl 0821.35115

[8] V. Isakov, Uniqueness and stability in multi-dimensional inverse problems, Inverse Problems, Vol. 9, 1993, pp. 579-621 | MR 1251194 | Zbl 0924.35195

[9] H. Isozaki, Multi-dimensional inverse scattering theory for Schrödinger operators, to appear in Reviews in Math. Phys.. | MR 1405765 | Zbl 0859.35083

[10] S.T. Kuroda, Scattering theory for differential operators, II, J. Math. Soc. Japan, Vol. 25, 1972, pp. 222-234. | MR 326436 | Zbl 0252.47007

[11] A. Nachman, Reconstruction from boundary measurements, Ann. Math., Vol. 128, 1988, pp. 531-576. | MR 970610 | Zbl 0675.35084

[12] A. Nachman, Inverse scattering at fixed energy, Proceedings of the 10th International Congress on Math. Phys., Leipzig 1991, edited by K. Schmügen, Springer Verlag, 1992, pp. 434-441. | MR 1386440 | Zbl 0947.81562

[13] A.I. Nachman and M.J. Ablowitz, A multi-dimensional inverse scattering method, Stud. Appl. Math., Vol. 71, 1984, pp. 243-250. | Zbl 0557.35032

[14] G. Nakamura and G. Uhlman, Global uniqueness for an inverse bounday problem arising in elasticity, Invent. math., Vol. 118, 1994, pp. 457-474. | MR 1296354 | Zbl 0814.35147

[15] R.G. Newton, Inverse Schrödinger Scattering in Three Dimensions, Springer-Verlag, Berlin-Heidelberg-New York, 1989. | MR 1029031 | Zbl 0697.35005

[16] R.G. Novikov and G.M. Khenkin, The ∂-equation in the multi-dimensional inverse scattering problem, Russian Math. Surveys, Vol. 42, 1987, pp. 109-180. | Zbl 0674.35085

[17] R.G. Novikov, The inverse scattering problem at fixed energy for the three-dimensional Schrödinger equation with an exponentially decreasing potential, Commun. Math. Phys., Vol. 161, 1994, pp. 569-595. | MR 1269391 | Zbl 0803.35166

[18] P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. J., Vol. 70, 1993, pp. 617-653. | MR 1224101 | Zbl 0804.35152

[19] J. Sylvester and G. Uhlman, A global uniqueness theorem for an inverse boundary value problem, Ann. Math., Vol. 125, 1987, pp. 153-169. | MR 873380 | Zbl 0625.35078

[20] B. Thaller, Dirac Equations, Texts and Monographs in Physics, Springer, Berlin 1992. | MR 1219537

[21] B. Thaller, V. Enss, Asympotic observables and Coulomb scattering for the Dirac equation, Ann. Inst. H. Poincaré, Vol. 45, 1986, pp. 147-171. | Numdam | MR 866913 | Zbl 0615.47008

[22] G. Uhlmann, Inverse boundary value problems and applications, Astérisque, Vol. 207, 1992, pp. 153-211. | MR 1205179 | Zbl 0787.35123

[23] R. Weder, Generalized limiting absorption method and multidimensional inverse scattering theory, Math. Meth. in Appl. Sci., Vol. 14, 1991, pp. 509-524. | MR 1125019 | Zbl 0738.35055

[24] O. Yamada, Eigenfunction expansions and scattering theory for Dirac operators, Publ. RIMS. Kyoto Univ., Vol. 11, 1976, pp. 651-689. | MR 407471 | Zbl 0334.35060