Deux applications de la géométrie locale des diffiétés
Annales de l'I.H.P. Physique théorique, Tome 66 (1997) no. 3, pp. 275-292.
@article{AIHPA_1997__66_3_275_0,
     author = {Fliess, Michel and L\'evine, Jean and Martin, Philippe and Rouchon, Pierre},
     title = {Deux applications de la g\'eom\'etrie locale des diffi\'et\'es},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {275--292},
     publisher = {Gauthier-Villars},
     volume = {66},
     number = {3},
     year = {1997},
     mrnumber = {1456514},
     zbl = {0895.58003},
     language = {fr},
     url = {http://archive.numdam.org/item/AIHPA_1997__66_3_275_0/}
}
TY  - JOUR
AU  - Fliess, Michel
AU  - Lévine, Jean
AU  - Martin, Philippe
AU  - Rouchon, Pierre
TI  - Deux applications de la géométrie locale des diffiétés
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1997
SP  - 275
EP  - 292
VL  - 66
IS  - 3
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1997__66_3_275_0/
LA  - fr
ID  - AIHPA_1997__66_3_275_0
ER  - 
%0 Journal Article
%A Fliess, Michel
%A Lévine, Jean
%A Martin, Philippe
%A Rouchon, Pierre
%T Deux applications de la géométrie locale des diffiétés
%J Annales de l'I.H.P. Physique théorique
%D 1997
%P 275-292
%V 66
%N 3
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1997__66_3_275_0/
%G fr
%F AIHPA_1997__66_3_275_0
Fliess, Michel; Lévine, Jean; Martin, Philippe; Rouchon, Pierre. Deux applications de la géométrie locale des diffiétés. Annales de l'I.H.P. Physique théorique, Tome 66 (1997) no. 3, pp. 275-292. http://archive.numdam.org/item/AIHPA_1997__66_3_275_0/

[1] D.V. Alekseevskij, A.M. Vinogradov et V.V. Lychagin, Geometry I, Basic Ideas and Concepts of Differential Geometry, Encycl. Math. Sci., Vol. 28, Springer-Verlag, Berlin, 1991. | MR

[2] R.L. Anderson et N.H. Ibragimov, Lie-Bäcklund Transformations in Applications, S.I.A.M., Philadelphie, 1979. | Zbl

[3] P. Appell, Traité de Mécanique Rationnelle, t. 2, 6e éd., Gauthier-Villars, Paris, 1953.

[4] V.I. Arnold, V.V. Kozlov et A.I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, in Dynamical Systems III, Encycl. Math. Sci., Vol. 3, Springer-Verlag, Berlin, 1988. | MR

[5] J.E. Björk, Rings of Differential Operators, North-Holland, Amsterdam, 1979. | MR | Zbl

[6] K.E. Brenan, S.L. Campbell et L.R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Elsevier, Amsterdam, 1989. | MR | Zbl

[7] A. Buium, Differential Algebraic Groups of Finite Dimension, Springer-Verlag, Berlin, 1992. | MR | Zbl

[8] A. Buium, Differential Algebra and Diophantine Geometry, Hermann, Paris, 1994. | MR | Zbl

[9] P.J. Cassidy, The classification of the semisimple differential algebraic groups and the linear semisimple differential algebraic Lie algebras, J. Algebra, Vol. 121, 1989, p. 169-238. | MR | Zbl

[10] P.M. Cohn, Free Rings and their Relations, 2nd ed., Academic Press, Londres, 1985.

[11] P. Dazord, Mécanique hamiltonienne en présence de contraintes, Illinois J. Math., Vol. 38, 1994, p. 148-175. | MR | Zbl

[12] E. Delaleau et W. Respondek, Lowering the orders of derivatives of controls in generalized state space systems, J. Math. Systems Estimat. Control, Vol. 5, 1995, p. 375-378. | MR | Zbl

[13] L.A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific, Singapour, 1991. | MR | Zbl

[14] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, Chichester, 1993. | MR

[15] M. Fliess, Automatique et corps différentiels, Forum Math., Vol. 1, 1989, p. 227-238. | MR | Zbl

[16] M. Fliess, Generalized controller canonical forms for linear and nonlinear dynamics, IEEE Trans. Automat. Control, Vol. 35, 1990, p. 994-1001. | MR | Zbl

[17] Fliess and S.T. Glad, An algebraic approach to linear and nonlinear control, in Essays on Control: Perspectives in the Theory and its Applications (H. Trentelman and J. C. Willems Eds), Birkhäuser, Boston, 1993, p. 223-267. | MR | Zbl

[18] M. Fliess, J. Lévine, P. Martin, F. Ollivier et P. Rouchon, Flatness and dynamic feedback linearizability: two approaches, Proc. 3rd European Control Conf., Rome, 1995, p. 649-654.

[19] M. Fliess, J. Lévine, P. Martin et P. Rouchon, Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund, C. R. Acad. Sci. Paris, Vol. I-317, 1993, p. 981-986. | MR | Zbl

[20] M. Fliess, J. Lévine, P. Martin et P. Rouchon, Nonlinear control and Lie-Bäcklund transformations: Towards a new differential geometric standpoint, Proc. IEEE Control Decision Conf., Lake Buena Vista, FL, 1994, p. 339-344.

[21] M. Fliess, J. Lévine, P. Martin et P. Rouchon, Flatness and defect of non-linear systems: introductory theory and examples, Internat. J. Control, Vol. 61, 1995, p. 1327-1361. | MR | Zbl

[22] M. Fliess, J. Lévine, P. Martin et P. Rouchon, Index and decomposition of nonlinear implicit differential equations, Proc. IFAC Conf. System Structure Control, Nantes, 1995, p. 43-48.

[23] M. Fliess, J. Lévine, P. Martin et P. Rouchon, Design of trajectory stabilizing feedback for driftless flat systems, Proc. 3rd European Control Conf., Rome, 1995, p. 1882-1887.

[24] M. Fliess, J. Lévine, P. Martin et P. Rouchon, A Lie-Bäcklund transformation approach to equivalence and flatness of nonlinear systems, à paraître.

[25] M. Fliess, J. Lévine et P. Rouchon, A generalised state variable representation for a simplified crane description, Internat. J. Control, Vol. 58, 1993, p. 277-283. | MR | Zbl

[26] G. Giachetta, Jet methods in nonholonomic mechanics, J. Math. Physics, Vol. 33, 1992, p. 1652-1665. | MR | Zbl

[27] M. Gromov, Partial Differential Relations, Springer-Verlag, Berlin, 1986. | MR | Zbl

[28] V.N. Gusyatnikova, A.M. Vinogradov et V.A. Yumaguzhin, Secondary differential operators, J. Geometry Physics, Vol. 2, 1985, p. 23-65. | MR | Zbl

[29] E. Hairer, C. Lubich et M. Roche, The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods, Springer-Verlag, Berlin, 1989. | MR | Zbl

[30] G. Hamel, Theoretische Mechanik, Springer-Verlag, Berlin, 1949. | MR

[31] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977. | MR | Zbl

[32] M. Henneaux et C. Teitelboim, Quantization of Gauge Systems, Princeton University Press, Princeton, 1992. | MR | Zbl

[33] N.H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Reidel, Boston, 1985. | Zbl

[34] A. Isidori, Nonlinear Control Systems, 3rd ed., Springer-Verlag, New York, 1995.

[35] J. Johnson, Kähler differentials and differential algebra, Ann. of Math., Vol. 89, 1969, p. 92-98. | MR | Zbl

[36] J. Johnson, Prolongations of integral domains, J. Algebra, Vol. 94, 1985, p. 173-211. | MR

[37] E.R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York, 1973. | MR | Zbl

[38] E.R. Kolchin, Differential Algebraic Groups, Academic Press, Orlando, 1985. | MR | Zbl

[39] I.S. Krasil'Shchik, V.V. Lychagin et A.M. Vinogradov, Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Gordon and Breach, New York, 1986. | MR | Zbl

[40] B.A. Kupershmidt, The Variational Principles of Dynamics, World Scientific, Singapour, 1992. | MR | Zbl

[41] Yu.I. Manin, Algebraic aspects of nonlinear differential equations, J. Soviet Math., Vol. 11, 1979, p. 1-122. | Zbl

[42] E. Massa et E. Pagani, Classical dynamics of non-holonomic systems, Ann. Inst. H. Poincaré Phys. Théor., Vol. 55, 1991, p. 511-544. | Numdam | MR | Zbl

[43] E. Massa et E. Pagani, Jet bundle geometry, dynamical connections, and the inverse problem of Lagrangian mechanics, Ann. Inst. H. Poincaré Phys. Théor., Vol. 61, 1994, p. 17-62. | Numdam | MR | Zbl

[44] Ju.I. Neĭmark et N.A. Fufaev, Dynamics of Nonholonomic Systems, Amer. Math. Soc., Providence, R.I., 1972.

[45] H. Nijmeijer et Van Der Schaft, Nonlinear Control Systems, Springer-Verlag, New York, 1990. | Zbl

[46] P.J. Olver, Applications of Lie Groups to Differential Equations, 2nd ed., Springer-Verlag, New York, 1993. | MR | Zbl

[47] J.F. Ritt, Differential Algebra, Amer. Math. Soc., New York, 1950. | Zbl

[48] J.C. Tougeron, Idéaux de Fonctions Différentiables, Springer-Verlag, Berlin, 1972. | MR | Zbl

[49] T. Tsujishita, Formal geometry of systems of differential equations, Sugaku Expos., Vol. 3, 1990, p. 25-73. | Zbl

[50] T. Tsujishita, Homological method of computing invariants of systems of differential equations, Diff. Geometry Appl., Vol. 1, 1991, p. 3-34. | MR | Zbl

[51] A.M. Vinogradov, Local symmetries and conservation laws, Acta Appl. Math., Vol. 2, 1984, p. 21-78. | MR | Zbl

[52] A.M. Vinogradov, Ed., Symmetries of Partial Differential Equations, Kluwer, Dordrecht, 1989 (reprinted from Acta Appl. Math., Vol. 15, 1989, n° 1-2, and Vol. 16, 1989, n° 1-2). | MR | Zbl

[53] A.M. Vinogradov, Scalar differential invariants, diffieties and characteristic classes, in Mechanics, Analysis and Geometry: 200 Years after Lagrange (M. Francaviglia Ed.), North-Holland, Amsterdam, 1991, p. 379-416. | MR | Zbl

[54] A.M. Vinogradov, From symmetries of partial differential equations towards secondary ("quantized") calculus, J. Geometry Physics, Vol. 14, 1994, p. 146-194. | MR | Zbl

[55] E.T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed., Cambridge University Press, Cambridge, 1947. | MR

[56] V.V. Zharinov, On Bäcklund correspondences, Math. USSR Sb., Vol. 64, 1989, p. 277-293. | MR | Zbl

[57] V.V. Zharinov, Geometrical Aspects of Partial Differential Equations, World Scientific, Singapour, 1992. | MR | Zbl